Skip to main content
Log in

Surface plasmon resonance

Applications in understanding receptor-ligand interaction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

During last decade there has been significant progress in the development of analytical techniques for evaluation of receptor-ligand iteraction. Surface plasmon resonance (SPR)-based optical biosensors are now being used extensively to defined the kinetics of wide variety of macromolecular interactions and high- and low-affinity small molecule interactions. The experimental design data analysis methods are evolving along with widespread applications in ligand fishing, microbiology, virology, host-pathogen interaction, epitope mapping and protein-, cell-, membrane-, nucleic acid-protein interactions. SPR based biosensors have strong impact on basic and applied research significantly. This brief review describes the SPR technology and few of its applications in relation to receptor-ligand interaction that has brought significant change in the methodology, analysis, interpretation, and application of the SPR technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Markey, F. (1999), BIA J. 6, 14–17.

    Google Scholar 

  2. de Mellow, A. J. (1996), in Surface analytical techniques for probing biomaterial process (Davies, J., ed.), CRC Press, NY, pp. 1–44.

    Google Scholar 

  3. Van Regenmortel, M. H. V. (2003), in Immunogenicity of therapeutic biological products, vol. 112 (Brown, F., and Mire-Sluis, A. R., eds.), Karger Press, Basel, Germany, pp. 141–151.

    Google Scholar 

  4. Bernard, B. and Lengeler, B. (1978), Electronic structure of noble metals and polariton mediated light scattering, Springer, Berlin.

    Google Scholar 

  5. Flanagan, M. T. and Pantell, R. H. (1984), Electron. Lett. 20, 968–970.

    Article  Google Scholar 

  6. Liedberg, B., Nylander, C., and Lundstrom, I. (1983), Lab. Sensor. Actuat. 4, 299–304.

    Article  CAS  Google Scholar 

  7. Blaesing, F., Weigel, C., Welzeck, M., and Messer, W. (2000), Mol. Microbiol. 36, 557–569.

    Article  PubMed  CAS  Google Scholar 

  8. Hart, D. J., Speight, R. E., Cooper, M. A., Sutherland, J. D., and Blackburn, J. M. (1999), Nucl. Acids Res. 27, 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  9. Catimel, B., Weinstock, J., Nerrie, M., Domagala, T., and Nice, C. E. (2000), J. Chromatogr. A 869, 261–273.

    Article  PubMed  CAS  Google Scholar 

  10. Guermazi, S., Regnault, V., Gorgi, Y., Ayed, K., Licompte, T., and and Dellagi, K. (2000), Blood Coagul. Fibrinol. 11, 491–498.

    Article  CAS  Google Scholar 

  11. Achen, M. G., Roufail, S., Domagala, T., et al. (2000), Eur. J. Biochem. 267, 2505–2515.

    Article  PubMed  CAS  Google Scholar 

  12. Vogel, M., Miescher, S., Kuhn, S., et al. (2000), J. Mol. Biol. 298, 729–735.

    Article  PubMed  CAS  Google Scholar 

  13. Joohnson, U., Fagerstam, L., Iversson, B., et al. (1991), Biotechniques 11 620–627.

    Google Scholar 

  14. Baird, C. L., and Myszka, D. G. (2001), J. Mol. Recognit. 14, 261–268.

    Article  PubMed  CAS  Google Scholar 

  15. Rich, R. L., and Myszka, D. G. (2000), Curr. Opin. Biotechnol. 11, 54–61.

    Article  PubMed  CAS  Google Scholar 

  16. Myszka, D. G. (1997), Curr. Opin. Biotechnol. 8, 50–57.

    Article  PubMed  CAS  Google Scholar 

  17. Myszka, D. G. (1999), J. Mol. Recognit. 12, 279–284.

    Article  PubMed  CAS  Google Scholar 

  18. Morton, T. A. and Myszka, D. G. (1998), Methods Enzymol. 295, 268–294.

    PubMed  CAS  Google Scholar 

  19. Andersson, K., Kamalainen, M., and Malmquvist, M. (1999), Anal. Chem. 71, 2475–2481.

    Article  PubMed  CAS  Google Scholar 

  20. Goldstein, B., Coombs, D., He, X., Pineda, A. R., and Wofsy, C. (1999), J. Mol. Recognit. 12, 293–299.

    Article  PubMed  CAS  Google Scholar 

  21. Christensen, L. L. H. (1997), Anal. Biochem. 249, 153–164.

    Article  PubMed  CAS  Google Scholar 

  22. Myszka, D. G., He, X., Dembo, M., Morton, T. A., and Goldstein, B. (1998), Biophys. J. 75, 583–594.

    Article  PubMed  CAS  Google Scholar 

  23. Myszka, D. G. and Morton, T. A. (1998), Trends Biochem. Sci. 23, 149–150.

    Article  PubMed  CAS  Google Scholar 

  24. Martin, W. L. and Bjorkman, P.J. (1999), Biochemistry 38, 12639–12647.

    Article  PubMed  CAS  Google Scholar 

  25. Khalifa, M. B., Choulier, L., Lortat-Jacob, H., Altschuh, D., and Vernet, T. (2001), Anal. Biochem. 293, 194–203.

    Article  PubMed  CAS  Google Scholar 

  26. Kolb, A., Kaplita, P., Hayes, D., et al. (1998), Drug Discov. Today 3, 333–342.

    Article  CAS  Google Scholar 

  27. Akhouri, R. R., Bhatacharya, A., Pattnaik, P., Malhotra, P., and Sharma, A. (2004), Biochem. J. 379, 815–822.

    Article  PubMed  CAS  Google Scholar 

  28. Cooper, M. A. (2004), J. Mol. Recognit. 17, 286–315.

    Article  PubMed  CAS  Google Scholar 

  29. Sackmann, E. and Tanaka, M. (2000), Trends Biotechnol. 18, 58–64.

    Article  PubMed  CAS  Google Scholar 

  30. Kuziemko, G. M., Stroh, M., and Stevens, R. C. (1996), Biochemistry 35, 6375–6384.

    Article  PubMed  CAS  Google Scholar 

  31. Terrettaz, S., Stora, T., Duschl, C., and Vogel, H (1993), Langmuir 9, 1361–1369.

    Article  CAS  Google Scholar 

  32. MacKeizie, C. R., Hirama, T., Lee, K. K., Altman, E., and Young, N. M. (1997), J. Biol. Chem. 272, 5533–5538.

    Article  Google Scholar 

  33. MacKeizie, C. R. and Hirama, T. (2000), Methods Enzymol. 312, 205–216.

    Article  Google Scholar 

  34. Cooper, M. A., Hansson, A., Lofas, S., and Williams, D. H. (2000), Anal. Biochem. 277, 196–205.

    Article  PubMed  CAS  Google Scholar 

  35. Ellson, C. D., Gobert-Gosse, S., Anderson, K. E., et al. (2001), Nat. Cell Biol. 3, 679–682.

    Article  PubMed  CAS  Google Scholar 

  36. Karlsson, O. P. and Lofas, S. (2002), Anal. Biochem. 300, 132–138.

    Article  PubMed  CAS  Google Scholar 

  37. Cooper, M. A. and Williams, D. H. (1999), Anal. Biochem. 276, 36–47.

    Article  PubMed  CAS  Google Scholar 

  38. Ravanat, C., Schuhler, S., Lanza, F., and Cazenave, J. (1998), BIA J. 5, 31.

    Google Scholar 

  39. Quinn, J. G., O'Neill, S., Doyle, A., et al. (2000), Anal. Biochem. 281, 135–143.

    Article  PubMed  CAS  Google Scholar 

  40. Quinn, J. G. and O'Kennedy, R. (2001), BIA J. 8, 22–24.

    Google Scholar 

  41. Pandey, K. C., Singh, S., Pattnaik, P., et al. (2002), Mol. Biochem. Parasitol. 123, 23–33.

    Article  PubMed  CAS  Google Scholar 

  42. Sim, B. K., Chitnis, C. E., Wasniowska, K., Hadley, T. J., and Miller, L. H. (1994), Science 264, 1941–1944.

    Article  PubMed  CAS  ADS  Google Scholar 

  43. Hans, D., Pattnaik, P., Bhattacharya, A., et al. (2005), Mol. Microbiol. 55, 1423–1434.

    Article  PubMed  CAS  Google Scholar 

  44. Williams, C. (2000), Curr. Opin. Biotechnol. 11, 42–46.

    Article  PubMed  CAS  Google Scholar 

  45. Davis, S., Aldrich, T. H., Jones, P. F., et al. (1996), Cell 87, 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  46. Lackmann, M., Bucci, T., Mann, R. J., et al. (1996), Proc. Natl. Acad. Sci. USA 93, 2523–2527.

    Article  PubMed  CAS  ADS  Google Scholar 

  47. Atwell, S., Ultsch, M., De Vos, A. M., and Wells, J. A. (1997), Science 278, 1125–1128.

    Article  PubMed  CAS  ADS  Google Scholar 

  48. Mangold, U., Dax, C. I., Saar, K., Schwab, W., Kirschbaum, B., and Mullner, S. (1999), Eur. J. Biochem. 266, 1184–1191.

    Article  PubMed  CAS  Google Scholar 

  49. Hamalainen, M. D., Markgren, P.-O., Schaal, W., et al. (2000), Biomol. Screen. 5, 353–360.

    Article  CAS  Google Scholar 

  50. Markgren, P.-O., Hamalainen, M., and Danielson U. H. (1998), Anal. Biochem. 265, 340–350.

    Article  PubMed  CAS  Google Scholar 

  51. Karlsson, R., Kullman-Magnusson, M., Hamalainen, M. D., et al. (2000), Anal. Biochem. 278, 1–13.

    Article  PubMed  CAS  Google Scholar 

  52. Adamczyk, M., Moore, J. A., and Yu., Z. (2000), Methods 20, 319–328.

    Article  PubMed  CAS  Google Scholar 

  53. Frostell-Karlsson, A., Remaeus, A., Ross, H. et al. (2000), J. Med. Chem. 43, 1986–1992.

    Article  PubMed  CAS  Google Scholar 

  54. Danelian, E., Karlen, A., Karlson, R., et al. (2000), J. Med. Chem. 43, 2083–2086.

    Article  PubMed  CAS  Google Scholar 

  55. Rich, R. L. and Myszka, D. G. (2001), J. Mol. Recognit. 14, 273–294.

    Article  PubMed  CAS  Google Scholar 

  56. Myszka, D. G. and Rich, R. L. (2000), Pharm. Sci. Technol. Today 3, 310–317.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattnaik, P. Surface plasmon resonance. Appl Biochem Biotechnol 126, 79–92 (2005). https://doi.org/10.1385/ABAB:126:2:079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:126:2:079

Index Entries

Navigation