Applied Biochemistry and Biotechnology

, Volume 125, Issue 3, pp 147–157 | Cite as

Applications of polymer nanofibers in biomedicine and biotechnology

Review Article

Abstract

Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and internal molecular structures. A wide range of biodegradable biopolymers can be electrospun into mats with specific fiber arrangement and structural integrity. Through secondary processing, the nanofiber surface can be functionalized to display specific biochemical characteristics. It is hypothesized that the large surface area of nanofibers with specific surface chemistry facilitates attachment of cells and control of their cellular functions. These features of nanofiber mats are morphologically and chemically similar to the extracellular matrix of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, effective mechanical properties, and specific biochemical properties. The current emphasis of research is on exploiting such properties and focusing on determining appropriate conditions for electrospinning various polymers and biopolymers for eventual applications including multifunctional membranes, biomedical structural elements (scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, vascular grafts), protective shields in specialty fabrics, and filter media for submicron particles in the separation industry. This has resulted in the recent applications for polymer nanofibers in the field of biomedicine and biotechnology.

Index Entries

Electrospinning nanofibers tissue engineering biotechnology scaffolds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frenot, A. and Chronakis, I. S. (2003), Curr. Opin. Colloid Interf. Sci. 8, 64–75.CrossRefGoogle Scholar
  2. 2.
    Langer, R. and Vacanti, J. P. (1993), Science 260, 920–926.CrossRefGoogle Scholar
  3. 3.
    Zong, X., Kim, K., Fang, D., Hsiao, B. S., and Chu, B. (2002), Polymer 43, 4403–4412.CrossRefGoogle Scholar
  4. 4.
    Butler, S. M., Tracy, M. A., and Tilton, R. D. (1999), J. Control. Release 58, 335–337.CrossRefGoogle Scholar
  5. 5.
    King, E. and Cameron, R. E. (1997), J. Appl. Polym. Sci. 66, 1681–1690.CrossRefGoogle Scholar
  6. 6.
    Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. (2003), Composites Sci. Technol. 63, 2223–2253.CrossRefGoogle Scholar
  7. 7.
    Wang, X., Drew, C., Kuma, J., and Samuelson, L. A. (2002), Nano Lett. 2, 1273–1275.CrossRefGoogle Scholar
  8. 8.
    Ramakrishna, S., Mayer, J., and Leong, K. W. (2001), Composites Sci. Technol. 61, 1189–1224.CrossRefGoogle Scholar
  9. 9.
    Schreuder-Gibson, H., Gibson, P., Ziegler, D., and Tsai, P. P. (2002), J. Adv. Mater. 34, 44–55.Google Scholar
  10. 10.
    Ward, G. F. (2001), Filtration Separation 38, 42, 43.CrossRefGoogle Scholar
  11. 11.
    Lee, S. H., Kim, B. S., Mooney, D. J., and Kim, Y. H. (2003), J. Biomed. Mater. Res. 66A, 29–37.CrossRefGoogle Scholar
  12. 12.
    Hickman, K. (2002), www.csa.com. Date accessed: March 21, 2005.Google Scholar
  13. 13.
    Smith, D.J., Reneker, D.M., McManus, A.T. Schreuder-Gibson, H.L., Mello, C., and Sennett, M.S. (2004), The University of Akron, US Patent 6753454.Google Scholar
  14. 14.
    Kenawy, E. R., Bowlin, G. L., and Mansfield, K. (2002), J. Control. Release 81, 57–64.CrossRefGoogle Scholar
  15. 15.
    Kim, K., Yu, M., Hsiao, B.S., and Hadjiargyrou, M. (2003), Biomaterials 24, 4977–4985.CrossRefGoogle Scholar
  16. 16.
    Nakamura, T., Hitomi, S., and Ikada, Y. (1989), J. Biomed. Mater. Res. 23, 1115–1130.CrossRefGoogle Scholar
  17. 17.
    Miller, M. and Evans, G. R. (1998), in Frontiers in Tissue Engineering, Patrick, C. W., Mikos, A. G., and McIntire, L. V., eds., Pergamon, New York, pp. 213–232.Google Scholar
  18. 18.
    Ratner, B. D. (1993), J. Biomed. Mater. Res. 27, 837–850.CrossRefGoogle Scholar
  19. 19.
    Buchko, C. J., Chen, L. C., Shen, Y., and Martin, D. C. (1999), Polymer 40, 7397–7407.CrossRefGoogle Scholar
  20. 20.
    Gosiewska, A., Rezania, A., Dhanaraj, S., and Geesin, J. C. (2001), Tissue Eng. 7, 267–277.CrossRefGoogle Scholar
  21. 21.
    Li, W. J., Laurencin, C. T., Tuan, R. S., and Ko, F. K. (2002), J. Biomed. Mater. Res. 60, 613–621.CrossRefGoogle Scholar
  22. 22.
    Dai, N. T., Williamson, M. R., and Coombes, A. G. A. (2004), Biomaterials 25, 4263–4271.CrossRefGoogle Scholar
  23. 23.
    Pitt, C. G., Kilmas, D. M., and Schindler, A. (1981), J. Appl. Polym. Sci. 26, 3779–3787.CrossRefGoogle Scholar
  24. 24.
    Yannas, I. V. (1998), Wound Repair Regen. 6, 518–524.CrossRefGoogle Scholar
  25. 25.
    Coombes, A. G. A., Verderio, E., Shaw, B., and Downes, D. (2002), Biomaterials 23, 2113–2118.CrossRefGoogle Scholar
  26. 26.
    Bowlin, G. L. (2003), www.futurepundit.com.Google Scholar
  27. 27.
    Lee, S. H., Mooney, D. J., and Kim, Y. H. (2003), J. Biomed. Mater. Res. 66A, 29–37.CrossRefGoogle Scholar
  28. 28.
    Robins, B. D. (1992), Br. J. Theatre Nurs. 12, 9–12.Google Scholar
  29. 29.
    Mo, X. M., Xu, C. Y., Kotaki, M., and Ramakrishna, S. (2004), Biomaterials 25, 1883–1890.CrossRefGoogle Scholar
  30. 30.
    Xu, C. Y., Inai, R., Kotaki, M., and Ramakrishna, S. (2004), Biomaterials 25, 877–886.CrossRefGoogle Scholar
  31. 31.
    Chung, T. W., Liu, T. W., Wang, D. Z., and Wang, S. S. (2003), Biomaterials 24, 4655–4661.CrossRefGoogle Scholar
  32. 32.
    Grad, S., Kupcsik, L., Gogolewski, S., and Alini, M. (2003), Biomaterials 24, 5163–5171.CrossRefGoogle Scholar
  33. 33.
    Lu, L., Zhu, X., Valenzuela, R. G., and Yaszemski, M. J. (2001), Clin. Orthop. 391, S251-S270.CrossRefGoogle Scholar
  34. 34.
    Reinholz, G. G., Lu, L., and Driscoll, S. W. (2004), Biomaterials 25, 1511–1521.CrossRefGoogle Scholar
  35. 35.
    Grande, D. A., Halberstadt, C., Schwartz, R., and Manji, R. (1997), J. Biomed. Mater. Res. 34, 211–220.CrossRefGoogle Scholar
  36. 36.
    Freed, L. E., Rupnick, M. A., Schaefer, D., and Vunjak-Novakovic (2003) in Functional Tissue Engineering: The Role of Biomechanics, Guilak, F., Butler, D., Mooney, D., and Goldstein, S., eds., Springer Verlag, pp. 360–376.Google Scholar
  37. 37.
    Olivier, V., Faucheux, N., and Hardouin, P. (2004), Drug Discov. Today 9, 803–811.CrossRefGoogle Scholar
  38. 38.
    Caplan, A. I. (1991), J. Orthop. Res. 9, 641–650.CrossRefGoogle Scholar
  39. 39.
    Pittenger, M. F., Douglas, R., and Marshak, D. R. (1999), Science 284, 143–147.CrossRefGoogle Scholar
  40. 40.
    Terai, H., Yamano, Y., and Vacanti, J. P. (2002), Mater. Sci. Eng. C 20, 3–8.CrossRefGoogle Scholar
  41. 41.
    Leong, K. W., Brott, B. C., and Langer, R. (1985), J. Biomed. Mater. Res. 19, 941–955.CrossRefGoogle Scholar
  42. 42.
    Benicewicz, B. C. and Hopper, P. K. (1991), J. Bioact. Compat. Polym. 6, 64–94.CrossRefGoogle Scholar
  43. 43.
    Holland, S., Tighe, B. J., and Gould, P. L. (1986), J. Control. Release 4, 155–180.CrossRefGoogle Scholar
  44. 44.
    Ishaug, S. L., Bizios, R., and Mikos, A. G. (1994), J. Biomed. Mater. Res. 28, 1445–1453.CrossRefGoogle Scholar
  45. 45.
    Yoshimoto, H., Terai, H., and Vacanti, J. P. (2003), Biomaterials 24, 2077–2082.CrossRefGoogle Scholar
  46. 46.
    Rizzi, S. C., Bock, N., and Downes, S. (2001), J. Biomed. Mater. Res. 55, 475–486.CrossRefGoogle Scholar
  47. 47.
    Kikuchi, M., Cho, S. B., and Tanaka, J. (1997), Bioceramics 10, 407–410.Google Scholar
  48. 48.
    Piattelli, A., Santello, M. T. and Scarano, A. (1997), Biomaterials 18, 629–633.CrossRefGoogle Scholar
  49. 49.
    Price, R. L., Haberstroh, K. M., and Webster, T. J. (2003), Biomaterials 24, 1877–1887.CrossRefGoogle Scholar
  50. 50.
    Elias, K. E., Price, R. L., and Webster, T. J. (2002), Biomaterials 23, 3279–3287.CrossRefGoogle Scholar
  51. 51.
    Thomson, R. C., Shung, A. K., and Mikos, A. G. (2000), in Principles of Tissue Engineering, Lanza, R. P., Langer, R., Vacanti, J. P., eds., Academic, San Diego, pp. 251–261.Google Scholar
  52. 52.
    Yang, F., Murugan, R., Ramakrishna, M. S. and Wang, S. (2004), Biomaterials 25, 1891–1900.CrossRefGoogle Scholar
  53. 53.
    Spilker, M. H., Asano, K., Yannas, I. V., and Spector, M. (2001), Biomaterials 22, 1085–1093.CrossRefGoogle Scholar
  54. 54.
    Widmer, M. S., Gupta, P. K., and Mikos, A. G. (1998), Biomaterials 19, 1945–1955.CrossRefGoogle Scholar
  55. 55.
    Fabre, T., Schappacher, M., Soum, A., Bertrand-Barat, J., and Baquey, C. (2001), Biomaterials 22, 2951–2958.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  1. 1.E3 #05-14, Biochemistry, NUSNNINational University of SingaporeSingapore

Personalised recommendations