Advertisement

Applied Biochemistry and Biotechnology

, Volume 124, Issue 1–3, pp 1081–1099 | Cite as

Understanding factors that limit enzymatic hydrolysis of biomass

Characterization of pretreated corn stover
  • Lizbeth Laureano-Perez
  • Farzaneh Teymouri
  • Hasan Alizadeh
  • Bruce E. DaleEmail author
Article

Abstract

Spectroscopic characterization of both untreated and treated material is being performed in order to determine changes in the biomass and the effects of pretreatment on crystallinity, lignin content, selected chemical bonds, and depolymerization of hemicellulose and lignin. The methods used are X-ray diffraction for determination of cellulose crystallinity (CrI); diffusive reflectance infrared (DRIFT) for changes in C-C and C-O bonds; and fluorescence to determine lignin content. Changes in spectral characteristics and crystallinity are statistically correlated with enzymatic hydrolysis results to identify and better understand the fundamental features of biomass that govern its enzymatic conversion to monomeric sugars. Models of the hydrolysis initial rate and 72 h extent of conversion were developed and evaluated. Results show that the hydrolysis initial rate is most influenced by the cellulose crystallinity, while lignin content most influences the extent of hydrolysis at 72 h. However, it should be noted that in this study only crystallinity, lignin, and selected chemical bonds were used as inputs to the models. The incorporation of additional parameters that affect the hydrolysis, like pore volume and size and surface area accessibility, would improve the predictive capability of the models.

Index Entries

AFEX corn stover multilinear regression statistical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyman, C. E. (1994), Ethanol from Lignocellulosic Biomass: technology, economics and opportunities, Biores. Techn. 50, 3–16.CrossRefGoogle Scholar
  2. 2.
    Wyman, Charles (ed.), (1996), Handbook on Bioethanol: Production and Utilization, Taylor and Francis, Washington, DC, USA.Google Scholar
  3. 3.
    Buchanan, Bob B. Gruissem W., and Jones R. L. (2001), Biochemistry and Molecular Biology of Plants, 3rd ed. Courier Companies, Inc., 2001.Google Scholar
  4. 4.
    Sugiyama, J., Okano, T., Yamamoto, H., and Horii, F. (1990), Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment, Macromolecules 23, 2461–2498.CrossRefGoogle Scholar
  5. 5.
    Chang, V. S., Barry Burr, and Mark T. Holtzapple. (1997), “Lime Pretreatment of Switchgrass”, Appl Biochem Biotechnol, 63–65, 3–19.Google Scholar
  6. 6.
    Holtzapple, M. T., Jun, J.-H., Ashok, G., Patibandla, S. L., and Dale, B. E. (1991), The ammonia freeze explosion (AFEX) process, Appl Biochem Biotechnol, 28/29, 59–74.Google Scholar
  7. 7.
    Yoon, H.H., Wu, Z.W. and Lee, Y.Y. (1995), Ammonia-recycled percolation process for pretreatment of biomass feedstock, Appl. Biochem. Biotechnol. 51/52, 5–19.Google Scholar
  8. 8.
    Hogan, C. M. and Mes-Hartree, M. (1990), Recycle of cellulases and the use of lignocellulosic residue for enzyme production after hydrolysis of steam-pretreated aspenwood, J. Ind. Microbiol. 6, 253–262.CrossRefGoogle Scholar
  9. 9.
    Dale, B. E. and Moreira, M. J. (1983), Biotechnol. Bioengineer. Symp. 12, 13.Google Scholar
  10. 10.
    Holtzapple, M. T. and Torget, R. (1997), Thermal and biological processing, Appl. Biochem. Biotechnol. 63–65, 1–2.Google Scholar
  11. 11.
    Hespell, R. B., O’Bryan, P. J., Moniruzzaman, M., and Bothast, R. J. (1997), Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans, Appl. Biochem. Biotechnol. 62, 87–97.Google Scholar
  12. 12.
    Chang, V. S., Nagwani, M., and Holtzapple, M. T. (1998), Lime pretreatment of crop residues bagasse and wheat straw, Appl. Biochem. Biotechnol. 74, 135–159.Google Scholar
  13. 13.
    Segal, L., Creely, J. J., Martin, A. E., Jr., and Conrad, C. M. (1959), “An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Res. J. 29, 786–794.Google Scholar
  14. 14.
    Wallace, G., Chesson, A., Lomax, J.A., and Jarvis, M.C. (1991), Lignin-carbohydrate complexes in graminaceous cell walls in relation to digestibility, Animal Feed Sci. Technol., 32, 193–199.CrossRefGoogle Scholar
  15. 15.
    Jung, H. G., Mertens, D. R., and Payne, A. J. (1997), Correlation of acid detergent lignin and klason lignin with digestibility of forage dry matter and neutral detergent fiber, J. Dairy Sci. 80, 1622–1628.PubMedCrossRefGoogle Scholar
  16. 16.
    Morrison, I. M. (1974), Structural investigations on the lignin-carbohydrate complexes from Lolium perenne, Biochem. J., 139, 197–204.PubMedGoogle Scholar
  17. 17.
    Lundquist, K., Josefsson, B., and Nyquist, G. (1978), Analysis of lignin products by fluorescence spectroscopy, Holzforschung, 32, 27–32.CrossRefGoogle Scholar
  18. 18.
    Kong, F., Engler, C. R., and Soltes, E. J. (1992), Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood, Appl. Biochem. Biotechnol. 34/35, 23–35.CrossRefGoogle Scholar
  19. 19.
    Bertran, M. S. and Dale, B. E. (1985), Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose, Biotechnol. Bioengineer, XXVII, 177–181.CrossRefGoogle Scholar
  20. 20.
    Kendall, S. M. (1980), Multivariate Analysis 2nd ed., Macmillan Publishing, Co., New york.Google Scholar
  21. 21.
    Beebe, K. R. and Kowalski, B. R. (1987), An introduction to multivariate calibration and analysis, Analy. Chemi. 59, 1007A-1017A.CrossRefGoogle Scholar
  22. 22.
    Thompson David N., Hsin-Chih Chen, and Hans Grethlein. (1992), “Comparison of Pretreatment Methods on the Basis of Available Surface Area”, Biores Technol, 39, 155–163.CrossRefGoogle Scholar
  23. 23.
    Teymouri, F., Laureano-Perez, L., Alizadeh, H. and Dale, B. E. (2004), Ammonia fiber explosion treatment of corn stover, Appl. Biochem. Biotechnol. 113–116, 951–963.PubMedCrossRefGoogle Scholar
  24. 24.
    Stewart, D., Wilson, H.M., Hendra, P.J. and Morrison, I.M. (1995), Fourier-transform infrared spectroscopic study of biochemical and chemical Treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw, J. Agric Food Chem. 43, 2219–2225.CrossRefGoogle Scholar
  25. 25.
    Pandey, K.K. (1998), A study of chemical structure of soft and hardwood and wood polymers by FTIR sectroscopy, J. Appl. Polymer Sci. 71, 1969–1975.CrossRefGoogle Scholar
  26. 26.
    http://permanent.access.gpo.gov/websites/www.olt.doe.sov/biofuels/asclytical_methods.html.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Lizbeth Laureano-Perez
    • 1
  • Farzaneh Teymouri
    • 1
  • Hasan Alizadeh
    • 1
  • Bruce E. Dale
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast Lansing

Personalised recommendations