Applied Biochemistry and Biotechnology

, Volume 123, Issue 1–3, pp 827–836 | Cite as

Simultaneous biocatalyst production and baeyer-villiger oxidation for bioonversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase

  • Won-Heong Lee
  • Yong-Cheol Park
  • Dae-Hee Lee
  • Kyungmoon Park
  • Jin-Ho Seo
Session 5 Biobased Industrial Chemicals

Abstract

Cyclohexanone monooxygenase (CHMO) catalyzing Baeyer-Villiger oxidation converts cyclic ketones into optically pure lactones, which have been used as building blocks in organic synthesis. A recombinant Escherichia coli BL21(DE3)/pMM4 expressing CHMO originated from Acinetobacter sp. NCIB 9871 was used to produce ε-caprolactone through a simultaneous biocatalyst production and Baeyer-Villiger oxidation (SPO) process. Afed-batch process was designed to obtain high cell density for improvin production of ε-caprolactone. The fed-batch SPO process have the best results, 10.2 g/L of ε-caprolactone and 0.34 g/(L·h) of productivity, corresponding to a 10.5- and 3.4-fold enhancement compared with those of the batch SPO, respectively.

Index Entries

Simultaneous biocatalyst production and Baeyer-Villiger oxidation cyclohexanone monooxygenase Escherichia coli fed-batch process ε-caprolactone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Renz, M. and Meunier, B. (1999), Eur. J. Org. Chem. 4, 737–750.CrossRefGoogle Scholar
  2. 2.
    Kyte, B. G., Rouviere, P., Cheng, Q., and Stewart, J. D. (2004), J. Org. Chem. 69, 12–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Roberts, S. M. and Wan, P. W. H. (1998), J. Mol. Catal. B: Enzymat. 4, 111–136.CrossRefGoogle Scholar
  4. 4.
    Strukul, G. (1998), Angew. Chem. Int. Ed. Engl. 37, 1198–1209.CrossRefGoogle Scholar
  5. 5.
    Kelly, D. R., Wan, P. W. H., and Tang, J. (1998), in Biotechnology, vol. 8, Rehm, H. J., Reed, G., Puhler, A., and Stadler, P., eds., Wiley-VCH, Weinheim, Germany pp. 535–587.Google Scholar
  6. 6.
    Trudgill, P. W. (1990). Methods Enzymol. 37, 70–77.CrossRefGoogle Scholar
  7. 7.
    Willetts, A. (1997), TIBTECH 15, 55–62.Google Scholar
  8. 8.
    Vogel, M. and Schwarz-Linek, U. (1999), in Bioorganic Chemistry, Diederichsen, U., Lindhorst, T. K., Westermann, B., and Wessjohann, L. A., eds., Wiley-VCH, Weinheim, Germany, pp. 102–110.Google Scholar
  9. 9.
    Simpson, H. D., Alphand, V., and Furstoss, R. (2001), J. Mol. Catal. B: Enzymat. 16, 101–108.CrossRefGoogle Scholar
  10. 10.
    Doig, S. D., O'Sullivan, L. M., Patel, S., Ward, J. M., and Woodley, J. M. (2001), Enzyme Microb. Technol. 28, 265–274.PubMedCrossRefGoogle Scholar
  11. 11.
    Doig, S. D., Simpson, H., Alphand, V., Furstoss, R., and Woodley, J. M. (2003), Enzyme Microb. Technol. 32, 347–355.CrossRefGoogle Scholar
  12. 12.
    Doig, S. D., Avenell, P. J., Bird, P. A., Gallati, P., Lander, K. S., Lye, G. J., Wohlgemuth, R., and Woodley, J. M. (2002), Biotechnol. Prog. 18, 1039–1046.PubMedCrossRefGoogle Scholar
  13. 13.
    Mihovilovic, M. D., Muller, B., Kayser, M. M., Stewart, J. D., Frohlich, J., Stanetty, P., and Spreitzer, H. (2001), J. Mol. Catal. B: Enzymat. 11, 349–353.CrossRefGoogle Scholar
  14. 14.
    Martinez, C. A. (2000), PhD thesis, University of Florida, Gainesville.Google Scholar
  15. 15.
    Walton, A. Z. and Stewart, J. D. (2002), Biotechnol. Prog. 18, 262–268.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee, D. H., Kim, M. D., Lee, W. H., Kweon, D. H., and Seo, J. H. (2004), Appl. Microbiol. Biotechnol. 63, 549–552.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, G., Kayser, M. M., Mihovilovic, M. D., Mrstik, M. E., Martinez, C. A., and Stewart, J. D. (1999), N. J. Chem. 23, 827–832.CrossRefGoogle Scholar
  18. 18.
    Kim, M. D., Lee, W. J., Park, K. H., Rhee, K. H., and Seo, J. H. (2002), J. Microbiol. Biotechnol. 12(2) 273–278.Google Scholar
  19. 19.
    Choi, H. I., Lee, S. Y., Shin, K. S., Lee, W. G., Park, S. J., Chang, H. N., and Chang, Y. K. (2002), Biotechnol. Bioprocess Eng. 7, 371–374.CrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970), Nature 27, 680–685.CrossRefADSGoogle Scholar
  21. 21.
    Ramos, J. L., Duque, E., Gallegos, M. t., Godoy, R., Ramos-Gonzalez, I. R., Rojas, A., Teran, W., and Segura, A. (2002), Annu. Rev. Microbiol. 56, 743–768.PubMedCrossRefGoogle Scholar
  22. 22.
    White, D. G., Goldmas, J. D., Demple, B., and Levy, S. B. (1997), J. Bacteriol. 179, 6122–6126.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Won-Heong Lee
    • 1
    • 2
  • Yong-Cheol Park
    • 1
    • 2
  • Dae-Hee Lee
    • 1
    • 2
  • Kyungmoon Park
    • 3
  • Jin-Ho Seo
    • 1
    • 2
  1. 1.School of Agricultural BiotechnologySeoul National UniversitySeoulKorea
  2. 2.Center for Agricultural BiomaterialsSeoul National UniversitySeoulKorea
  3. 3.Department of Chemical System EngineeringHongik University, YeongigunChungnamKorea

Personalised recommendations