Advertisement

Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 741–752 | Cite as

Optimization of acid hydrolysis of sugarcane bagasse and investigations on its fermentability for the production of xylitol by Candida guilliermondii

  • Rafael Fogel
  • Rafaela Rodrigues Garcia
  • Rebeca da Silva Oliveira
  • Denise Neves Menchero Palacio
  • Luciana da Silva Madeira
  • Nei PereiraJr.
Article

Abstract

The dilute-acid hydrolysis of sugarcane bagasse was optimized using a statistical experimental design resulting in hydrolysates containing 57.25 g/L of xylose, which were fermented with a high inoculum concentration (10 g/L of the yeast Candida guilliermondii IM/UFRJ 50088). The addition of urea reduced the time of conversion (t C) to 75 h (without nitrogen source addition t C>127 h), and, consequently, improving the rates of xylitol bioproduction. Fermentator experiments, using the optimized conditions, resulted in enhanced conversion rates, reducing t C to 30 h. The stability of the yeast in the hydrolysate was also verified in a 480-h cultivation.

Index Entries

Sugarcane bagasse dilute-acid hydrolysis optimization sugarcane bagasse hydrolysate xylitol bioproduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lavarack, B.P., Griffin, G.J., and Rodman, D. (2000), Catalysis Today 63, 257–265.CrossRefGoogle Scholar
  2. 2.
    Neureiter, M., Danner, H., Thomasser, C., Saidi, B., and Braun, R. (2002), Appl. Biochem. Biotechnol. 98–100, 49–58.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, J. (1997), J. Biothecnol. 56, 1–24.Google Scholar
  4. 4.
    Hÿvonen, L., Koivistoinen, P., and Voirol, F. (1982), Adv. Food Res. 28, 373–403.Google Scholar
  5. 5.
    Scheinin, A., Mäniken, K.K., and Ylitalo, K. (1975), Acta Odontol. Scand. 33, 383–412.Google Scholar
  6. 6.
    Ylikari, R. (1979) Adv. Food. Res. 25, 159–180.Google Scholar
  7. 7.
    Cuzens, J.C. and Miller, J.R. (1997) Renewable Energy 10, 285–290.CrossRefGoogle Scholar
  8. 8.
    Barbosa, M.F.S., Medeiros, M.B., Mancilha, I.M., Schneider, H., and Lee, H. (1998), J. Ind. Microbiol. 3, 241–251.CrossRefGoogle Scholar
  9. 9.
    Palmqvist, E. and Hahn-Hägerdall, B. (2000), Bioresour. Technol. 74, 17–24.CrossRefGoogle Scholar
  10. 10.
    Faria, L.F.F., Gimenez, M.A.P., Nobrega, R., and Pereira N. Jr., (2002) Appl. Biochem. Biotechnol. 98–100, 449–458.PubMedCrossRefGoogle Scholar
  11. 11.
    Couto, M.A.P.G. (2002), DSc thesis, Post Graduate Program in Chemical and Biochemical Processes Technology, School of Chemistry, UFRJ, Rio de Janeiro, Brazil.Google Scholar
  12. 12.
    Aguiar, W.B., Jr., Faria, L.F.F., Couto, M.A.P.G., Araujo, O.Q.F., and Pereira N. Jr., (2002), Biochem. Eng. J. 3608, 1–11.Google Scholar
  13. 13.
    Lu, J., Tsai, L.B., Gong, C. S., and Tsao, G.T. (1995), Biothecnol. Lett. 17, 167–170.CrossRefGoogle Scholar
  14. 14.
    Sosa, E., Aranda, C., Riego, L., et al. (2003), Biochem. Biophys. Res. Commun. 310, 1175–1180.PubMedCrossRefGoogle Scholar
  15. 15.
    ter Schure, E.G., van Riel, N. A. W., and Verrips, T. (2000), FEMS Microbiol. Rev. 24, 67–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Messenguy, F. and Dubois, E. (2000), Food Technol. Biotechnol. 38, 277–285.Google Scholar
  17. 17.
    Rousselet, G., Simon, M., Ripoche, P., and Buhler, J. -M. (1995), FEBS Lett. 359, 215–219.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Rafael Fogel
    • 1
  • Rafaela Rodrigues Garcia
    • 1
  • Rebeca da Silva Oliveira
    • 1
  • Denise Neves Menchero Palacio
    • 1
  • Luciana da Silva Madeira
    • 1
  • Nei PereiraJr.
    • 1
  1. 1.Departmento de Engenharia Bioquímica, Escola de Química/CTUniversidade Federal do Rio de JaneiroRJBrazil

Personalised recommendations