Applied Biochemistry and Biotechnology

, Volume 120, Issue 3, pp 199–208 | Cite as

Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B

  • Luís Alves
  • Rita Salgueiro
  • Carla Rodrigues
  • Elsa Mesquita
  • José Matos
  • Francisco M. GírioEmail author
Original Articles


A novel bacterium, Gordonia alkanivorans strain 1B, was isolated from hydrocarbon-contaminated soil. Assessment of the biodegradation of distinct organic sulfur-compounds, such as dibenzothiophene (DBT), benzothiophene (BT), DBT sulfone, and alkylated tiophenic compounds, as the sole source of sulfure was investigated. G. alkanivorans strain 1B was able to remove selectively the sulfur from DBT while keeping intact the remaining carbon-carbon structure. Orthophenyl phenol (2-hydroxybiphenyl) was the only detected metabolic product. The bacterial desulfurization activity was repressed by sulfate. G. alkanivorans straini 1B consumed 310 μM DBT after 120 h of cultivation, corresponding to a specific desulfurization rate of 1.03 μmol/(g of dry cells·h). When an equimolar mixture of DBT/BT was used as a source of sulfur in the growth medium, G. alkanivorans strain 1B assimilated both compounds in a sequential manner, with BT as the preferred source of sulfur. Only when BT concentration was decreased to a very low level was DBT utilized as the source of sulfur for bacterial growth. Thespecific desulfurization overall rates of BT and DBT obtained were 0.954 and 0.813 μmol/(g of dry cells·h), respectively. The newly isolated G. alkanivorans strain 1B has good potential for application in the biodesulfurization of fossil fuels.

Index Entries

Biodeusulfurization dibenzothiophene benzothiophene sulfur Gordonia alkanivorans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reichmuth, D. S., Hittle, J. L., Blanch, H. W., and Keasling, J. D. (2000), Biotechnol. Bioeng. 67, 72–79.CrossRefGoogle Scholar
  2. 2.
    Schmidt, M., Siebert, W., and Bagnall, K. W. (1973), The Chemistry of Sulphur Selenium, Tellurium and Polonium: Pergamon Texts in Inorganic Chemistry, vol. 15, Pergamon, Oxford, UK.Google Scholar
  3. 3.
    Monticello, D. J. (1998), ChemTech 28, 38–45.Google Scholar
  4. 4.
    Gray, K. A., Mrachko, G. T., and Squires, C. H. (2003), Curr. Opin. Microbiol. 6, 229–235.CrossRefGoogle Scholar
  5. 5.
    Tanaka, Y., Matsui, T., Konishi, J., Maruhashi, K., and Kurane, R. (2002), Appl. Microbiol. Biotechnol. 59, 325–328.CrossRefGoogle Scholar
  6. 6.
    Grossman, M. J., Lee, M. K., Prince, R. C., Minak-Bernero V., George, G. N., and Pickering, I. J. (2001), Appl. Environ. Microbiol. 67, 1949–1952.CrossRefGoogle Scholar
  7. 7.
    Ohshiro, T. and Izumi, Y. (1999), Biosci. Biotechnol. Biochem. 63, 1–9.CrossRefGoogle Scholar
  8. 8.
    Kirimura, K., Furuya, T., Sato, R., Ishii, Y., Kino, K., and Usami, S. (2002), Appl. Environ. Microbiol. 68, 3867–3872.CrossRefGoogle Scholar
  9. 9.
    Gallagher, J. R., Olson, E. S., and Stanley, D. C. (1993), FEMS Microbiol. Lett. 107, 31–36.CrossRefGoogle Scholar
  10. 10.
    Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E. S., and Kulpa, C. F. (1997), Microbiology 143, 2961–2973.CrossRefGoogle Scholar
  11. 11.
    Gilbert, S. C., Morton, J., Buchanan, S., Oldfield, C., and McRoberts, A. (1998), Microbiology 144, 2545–2553.Google Scholar
  12. 12.
    van Afferden, M., Schacht, S., Klein, J., and Trüper, H. G. (1990), Arch. Microbiol. 153, 324–328.CrossRefGoogle Scholar
  13. 13.
    Kodanna, K., Umehara, K., Shimizu, K., Nakatani, S., Minoda, Y., and Yamada, K. (1973), Agric. Biot. Chem. 37, 45–50.Google Scholar
  14. 14.
    Konishi, J., Onaka, T., Ishii, Y., and Susuki, M. (2000), FEMS Microbiol. Lett. 187, 151–154.CrossRefGoogle Scholar
  15. 15.
    Kayser, K. J., Cleveland, L., Park, H.-S., Kwak, J.-H., Kolhatkar., A., and Kibane II, J. J. (2002), Appl. Microbiol. Biotechnol. 59, 737–745.CrossRefGoogle Scholar
  16. 16.
    Rhee, S. K., Chang, J. H., Chang, Y. K., and Chang, H. N. (1998), Appl. Environ. Microbiol. 64, 2327–2331.Google Scholar
  17. 17.
    Chang, J. H., Rhee, S.-K., Chang, Y. K., and Chang, H. N. (1998), Biotechnol. Prog. 14, 851–855.CrossRefGoogle Scholar
  18. 18.
    Kummer, C., Schumann, P., and Stackebrandt, E. (1999), Int. J. Syst. Bacteriol. 49, 1513–1522.CrossRefGoogle Scholar
  19. 19.
    Ohshiro, T., Suzuki, K., and Izumi, Y. (1996), J. Ferment. Bioeng. 81, 121–124.CrossRefGoogle Scholar
  20. 20.
    Finkel’shtein, Z. I., Baskunov, B. P., Golovlev, E. L., and Golovleva, L. A. (1999), Microbiology 68, 154–157.Google Scholar
  21. 21.
    Kirimura, K., Furuya, T., Nishii, Y., Ishii, Y., Kino, K., and Usami, S. (2001), J. Biosci. Bioeng. 91, 262–266.CrossRefGoogle Scholar
  22. 22.
    Wang, P. and Krawiec, S. (1994), Arch. Microbiol. 161, 266–271.Google Scholar
  23. 23.
    Tanaka, Y., Onaka, T., Matsui, T., Maruhashi, K., and Kurane, R. (2001) Curr Microbiol. 43, 187–191.CrossRefGoogle Scholar
  24. 24.
    Kobayashi, M., Onaka, T., Ishii, Y., Konishi, J., Takaki, M., Okada, H., Ohta, Y., Koizumi, K., and Suzuki, M. (2000), FEMS Microbiol. Lett. 187, 123–126.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Luís Alves
    • 1
  • Rita Salgueiro
    • 1
  • Carla Rodrigues
    • 1
  • Elsa Mesquita
    • 1
  • José Matos
    • 1
  • Francisco M. Gírio
    • 1
    Email author
  1. 1.Tecnologia Inovacáo, Departmento de BiotecnologiaInstituto Nacional de EngenhariaLisboaPortugal

Personalised recommendations