Applied Biochemistry and Biotechnology

, Volume 120, Issue 3, pp 169–174

Glycine-rich proteins

A class of novel proteins
Original Articles

Abstract

Glycine-rich proteins (GRPs) containing more than 60% glycine have been found in different tissues from many eukaryotic species. Despite the availability of literature on different groups of GRPs, there are few reports in which they are all considered and compared together. Some of these proteins are components of the cell walls of many higher plants. In most cases, it has been shown that they are accumulated in the vascular tissues and that their synthesis is part of the plant’s defense mechanism. Other distinct types of GRPs are characterized by having structures and functions similar to animal cytokeratins or by a domain with typical RNA-binding motifs. The availability of cloned GRP genes facilitates the study of the function of this diverse class of proteins, which is expected to enhance the understanding of cell physiology.

Index Entries

Cell wall proteins cytokeratin-like proteins glycine-rich protein (GRP) stress response RNA-binding proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keller, B., Templeton, M. D., and Lamb, C. J. (1989), Proc. Natl Acad. Sci. USA 86, 1529–1533.CrossRefGoogle Scholar
  2. 2.
    Condit, C. M. and Meagher, R. B. (1990), Plant Physiol. 93, 596–606.CrossRefGoogle Scholar
  3. 3.
    de Oliveira, D. E., Seurinck, J., Inze, D., Van Montagu, M., and Botterman, J. (1990), Plant Cell 2, 427–436.CrossRefGoogle Scholar
  4. 4.
    Cretin, C. and Puigdomenech, P. (1990), Plant Mol. Biol. 15, 783–785.CrossRefGoogle Scholar
  5. 5.
    van Nocker, S. and Vierstra, R. D. (1993), Plant Mol. Biol. 21, 695–699.CrossRefGoogle Scholar
  6. 6.
    Aneeta, Sanan-Mishra, N., Tuteja, N., and Kumar Sopory, S. (2002), Biochem. Biophys. Res. Commun. 6, 1063–1068.CrossRefGoogle Scholar
  7. 7.
    Rohde, W., Rosch, K., Kroger, K., and Salamini, F. (1990), Plant Mol. Biol. 14, 1057–1059.CrossRefGoogle Scholar
  8. 8.
    Showalter, A. M., Kieliszewisky, M., Cheung, A., and Tierney, M. (1996), Plant Mol. Biol. Rep. 14, 9, 10.Google Scholar
  9. 9.
    Condit, C. M. and Meagher, R. B. (1986), Nature 323, 178–181.CrossRefGoogle Scholar
  10. 10.
    Ringli, C., Keller, B., and Ryser, U. (2001), Cell. Mol. Life Sci. 58, 1430–1441.CrossRefGoogle Scholar
  11. 11.
    Ye, Z.-H., and Varner, J. E. (1991), Plant Cell 3, 23–37.CrossRefGoogle Scholar
  12. 12.
    Ryser, U. (2003), Planta 216, 854–64.Google Scholar
  13. 13.
    Fang, R. X., Pang, Z., Gao, D. M., Mang, K. G. and Chua, N. H. (1991) Plant Mol. Biol. 17, 1255–1257.CrossRefGoogle Scholar
  14. 14.
    Kaldenhoff, R. and Richter, G. (1989), Nucleic Acids Res. 17, 2853.CrossRefGoogle Scholar
  15. 15.
    Tang, Y.X., Xia, G.X., and Liu, SG. (2002), Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34, 737–742.Google Scholar
  16. 16.
    Didierjean, L., Frendo, P., and Burkard, G. (1992), Plant Mol. Biol. 18, 847–849.CrossRefGoogle Scholar
  17. 17.
    Chang, S., Puryear, J. D., Dias, M. A. D. L., Funkhouser, E. A., Newton, R. J., and Cairney, J. (1996), Physiol. Plant 97, 139–148.CrossRefGoogle Scholar
  18. 18.
    Mita, K., Ichimura, S., Zama, M., and James, T. C. (1988), J. Mol. Biol. 203, 917–925.CrossRefGoogle Scholar
  19. 19.
    Kobayashi, T., Kobayashi, E., Sato, S., Hotta, Y., Miyajima, N., Tanaka, A., and Tabata, S. (1994), DNA Res. 1, 15–26.CrossRefGoogle Scholar
  20. 20.
    Mousavi, A., Hiratsuka, R., Takase, H., Hiratsuka, K., and Hotta, Y. (1999), Plant Cell Physiol. 40, 406–416.Google Scholar
  21. 21.
    Ueki, S. and Citovsky, V. (2002), Nat. Cell. Biol. 4, 478–486.Google Scholar
  22. 22.
    de Oliveira, D. E., Franco, L. O., Simoens, C., Seurinck, J., Coppieters, J., Botterman, J., and Van Montagu, M. (1993), Plant J. 3, 495–507.CrossRefGoogle Scholar
  23. 23.
    Nadeau, J. A., Zhang, X. S., Li, J., and O’Neill, S. D. (1996), Plant Cell 8, 213–239.CrossRefGoogle Scholar
  24. 24.
    Dreyfuss, G., Swanson, M. S., and Pinol-Roma, S. (1988), Trends Biochem. Sci. 13, 86–91.CrossRefGoogle Scholar
  25. 25.
    Bandzilius, R. J., Swanson, M. S., and Dreyfuss, G. (1989), Genes Dev. 3, 431–437.Google Scholar
  26. 26.
    Steinert, P. M., Mack, J. W., Korge, B. P., Gan, S. Q., Haynes, S. R., and Steven, A. C. (1991), Int. J. Biol. Macromol. 13, 130–139.CrossRefGoogle Scholar
  27. 27.
    Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P., and Pages, M. (1988), Nature 334, 262–264.CrossRefGoogle Scholar
  28. 28.
    Richard, S., Drevet, C., Jouanin, L., and Seguin, A. (1999), Gene 240, 379–388.CrossRefGoogle Scholar
  29. 29.
    Ludevid, M. D., Freire, M. A., Gomez, J., Burd, C. G., Albericio, F., Giralt, E., Dreyfuss, G., and Pages, M. (1992), Plant J. 2, 999–1003.Google Scholar
  30. 30.
    Hirose, T., Sugita, M., and Sugiura, M. (1994), Mol. Gen. Genet. 244, 360–366.CrossRefGoogle Scholar
  31. 31.
    Alba, M. M., Culianez-Macia, F. A., Goday, A., Freire, M. A., Nadal, B., and Pages, M. (1994), Plant J. 6, 825–834.CrossRefGoogle Scholar
  32. 32.
    Steinert, P. M., Jones, J. C., and Goldman, R. D. (1984), J. Cell Biol. 99, 22s-27s.CrossRefGoogle Scholar
  33. 33.
    Steinert, P. M., Steven, A. C., and Roop, D. R. (1985), Cell 42, 411–420.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Plant Molecular Biology DivisionNational Research Center for Genetic Engineering and BiotechnologyTehranIran
  2. 2.Niigata University of Health and WelfareNiigataJapan

Personalised recommendations