Advertisement

Applied Biochemistry and Biotechnology

, Volume 118, Issue 1–3, pp 215–232 | Cite as

Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays

  • Tino Polen
  • Volker F. Wendisch
Article

Abstract

DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Grampositive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli.

Index Entries

Genomewide gene expression analysis DNA chips DNA microarrays cluster analysis global regulatory mechanisms amino acid production Corynebacterium glutamicum Escherichia coli. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eggeling, L., Pfefferle, W., and Sahm, H. (2001), in Basic Biotechnology, Ratledge, C., ed., Cambridge University Press, Cambridge, UK, pp. 281–302.Google Scholar
  2. 2.
    Swartz, J. R. (2001), Curr. Opin. Biotechnol. 12(2), 195–201.PubMedCrossRefGoogle Scholar
  3. 3.
    Nakamura, C. E., Gatenby, A. A., Hsu, A. K.-H., et al. (2000), US patent 6,013,494.Google Scholar
  4. 4.
    Altaras, N. E. and Cameron, D. C. (1999), Appl. Environ. Microbiol. 65(3), 1180–1185.PubMedGoogle Scholar
  5. 5.
    Donnelly, M. I., Millard, C. S., Clark, D. P., Chen, M. J., and Rathke, J. W. (1998), Appl. Biochem. Biotechnol. 70–72, 187–198.PubMedGoogle Scholar
  6. 6.
    Vemuri, G. N., Eiteman, M. A., and Altman, E. (2002), J. Industrial Microbiol. Biotechnol. 28(6), 325–332.CrossRefGoogle Scholar
  7. 7.
    Chang, D. E., Jung, H. C., Rhee, J. S., and Pan, J. G. (1999), Appl. Environ. Microbiol. 65(4), 1384–1389.PubMedGoogle Scholar
  8. 8.
    Zhou, S., Causey, T. B., Hasona, A., Shanmugam, K. T., and Ingram, L. O. (2003), Appl. Environ. Microbiol. 69(1), 399–407.PubMedCrossRefGoogle Scholar
  9. 9.
    Underwood, S. A., Zhou, S., Causey, T. B., Yomano, L. P., Shanmugam, K. T., and Ingram, L. O. (2002), Appl. Environ. Microbiol. 68(12), 6263–6272.PubMedCrossRefGoogle Scholar
  10. 10.
    Niu, W., Draths, K. M., and Frost, J. W. (2002), Biotechnol. Prog. 18(2), 201–211.PubMedCrossRefGoogle Scholar
  11. 11.
    Sahm, H., Eggeling, L., Eikmanns, B., and Kramer, R. (1996), Ann. NY Acad. Sci. 782, 25–39.PubMedCrossRefGoogle Scholar
  12. 12.
    Sahm, H., Eggeling, L., and de Graaf, A. A. (2000), Biol. Chem. 381(9–10), 899–910.PubMedCrossRefGoogle Scholar
  13. 13.
    Tauch, A., Homann, I., Mormann, S., et al. (2002), J. Biotechnol. 95(1), 25–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalinowski, J., Bathe, B., Bartels, D., et al. (2003), J. Biotechnol. 104, 5–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995), Science 270(5235), 467–470.PubMedCrossRefADSGoogle Scholar
  16. 16.
    Lockhart, D. J., Dong, H., Byrne, M. C., et al. (1996), Nat. Biotechnol. 14(13), 1675–1680.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S., and Cohen, S. N. (2002), Proc. Natl. Acad. Sci. USA 99(15), 9697–9702.PubMedCrossRefADSGoogle Scholar
  18. 18.
    Pedersen, S., Bloch, P. L., Reeh, S., and Neidhardt, F. C. (1978), Cell 14(1), 179–190.PubMedCrossRefGoogle Scholar
  19. 19.
    Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002), Nat. Biotechnol. 20(3), 301–305.PubMedCrossRefGoogle Scholar
  20. 20.
    Gavin, A. C., Bosche, M., Krause, R., et al. (2002), Nature 415(6868), 141–147.PubMedCrossRefADSGoogle Scholar
  21. 21.
    Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E., and Vale, R. D. (2000), Science 290(5490), 341–344.PubMedCrossRefADSGoogle Scholar
  22. 22.
    Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M., and Brown, P. O. (2001), Nature, 409(6819), 533–538.PubMedCrossRefADSGoogle Scholar
  23. 23.
    Zhu, H., Bilgin, M., Bangham, R., et al. (2001), Science 293(5537), 2101–2105.PubMedCrossRefADSGoogle Scholar
  24. 24.
    Raamsdonk, L. M., Teusink, B., Broadhurst, D., et al. (2001), Nat. Biotechnol. 19(1), 45–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E. D. (2002), Nature 420(6912), 190–193.PubMedCrossRefADSGoogle Scholar
  26. 26.
    Lange, C., Rittmann, D., Wendisch, V. F., Bott, M., and Sahm, H. (2003), Appl. Environ. Microbiol. 69(5), 2521–2532.PubMedCrossRefGoogle Scholar
  27. 27.
    Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999), Mol. Cell. Biol. 19(3), 1720–1730.PubMedGoogle Scholar
  28. 28.
    Yoshida, K., Kobayashi, K., Miwa, Y., et al. (2001), Nucleic Acids Res. 29(3), 683–692.PubMedCrossRefGoogle Scholar
  29. 29.
    Jurgen, B., Hanschke, R., Sarvas, M., Hecker, M., and Schweder, T. (2001), Appl. Microbiol. Biotechnol. 55(3), 326–332.PubMedCrossRefGoogle Scholar
  30. 30.
    Yoon, S. H., Han, M. J., Lee, S. Y., Jeong, K. J., and Yoo, J. S. (2003), Biotechnol. Bioeng. 81(7), 753–767.PubMedCrossRefGoogle Scholar
  31. 31.
    Peng, L. and Shimizu, K. (2003), Appl. Microbiol. Biotechnol. 61(2), 163–178.PubMedGoogle Scholar
  32. 32.
    Rhodius, V., Van Dyk, T. K., Gross, C., and LaRossa, R. A. (2002), Annu. Rev. Microbiol. 56, 599–624.PubMedCrossRefGoogle Scholar
  33. 33.
    Khodursky, A. B., and Bernstein, J. A. (2003), Trends Genet. 19(3), 113–115.PubMedCrossRefGoogle Scholar
  34. 34.
    Conway, T. and Schoolnik, G. K. (2003), Mol. Microbiol. 47(4), 879–889.PubMedCrossRefGoogle Scholar
  35. 35.
    Schoolnik, G. K. (2002), Adv. Microb. Physiol. 46, 1–45.PubMedGoogle Scholar
  36. 36.
    Picataggio, S. K., Templeton, L. J., Smulski, D. R., and LaRossa, R. A. (2002), Methods Enzymol. 358, 177–188.PubMedCrossRefGoogle Scholar
  37. 37.
    Ye, R. W., Wang, T., Bedzyk, L., and Croker, K. M. (2001), J. Microbiol. Methods 47(3), 257–272.PubMedCrossRefGoogle Scholar
  38. 38.
    Hermann, T., Pfefferle, W., Baumann, C., et al. (2001), Electrophoresis 22(9), 1712–1723.PubMedCrossRefGoogle Scholar
  39. 39.
    Schaffer, S., Weil, B., Nguyen, V. D., Dongmann, G., Gunther, K., Nickolaus, M., Hermann, T., and Bott, M. (2001), Electrophoresis 22(20), 4404–4422.PubMedCrossRefGoogle Scholar
  40. 40.
    Liang, P. and Pardee, A. B. (1992), Science 257(5072), 967–971.PubMedCrossRefADSGoogle Scholar
  41. 41.
    Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995), Science 270(5235), 484–487.PubMedCrossRefADSGoogle Scholar
  42. 42.
    Brenner, S., Johnson, M., Bridgham, J., et al. (2000), Nat. Biotechnol. 18(6), 630–634.PubMedCrossRefADSGoogle Scholar
  43. 43.
    van Hal, N. L., Vorst, O., van Houwelingen, A. M., Kok, E. J., Peijnenburg, A., Aharoni, A., van Tunen, A. J., and Keijer, J. (2000), J. Biotechnol. 78(3), 271–280.PubMedCrossRefGoogle Scholar
  44. 44.
    Hayward, R. E., Derisi, J. L., Alfadhli, S., Kaslow, D. C., Brown, P. O., and Rathod, P. K. (2000), Mol. Microbiol. 35(1), 6–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Rhodius, V. A. and LaRossa, R. A. (2003), Curr Opin Microbiol. 6(2), 114–119.PubMedCrossRefGoogle Scholar
  46. 46.
    Khodursky, A. B., Bernstein, J. A., Peter, B. J., Rhodius, V., Wendisch, V. F., and Zimmer, D. P. (2003), Methods Mol. Biol. 224, 61–78.PubMedGoogle Scholar
  47. 47.
    Muffler, A., Bettermann, S., Haushalter, M., Horlein, A., Neveling, U., Schramm, M., and Sorgenfrei, O. (2002), J. Biotechnol. 98(2–3), 255–268.PubMedCrossRefGoogle Scholar
  48. 48.
    Ishige, T., Krause, M., Bott, M., Wendisch, V. F., and Sahm, H. (2003), J. Bacteriol. 185(15), 4519–4529.PubMedCrossRefGoogle Scholar
  49. 49.
    Gerstmair, R., Wendisch, V. F., Schnicke, S., Ruan, H., Farwick, M., Reinscheid, D., and Eikmanns, B. J. (2003), J. Biotechnol. 104(1–3), 99–122.CrossRefGoogle Scholar
  50. 50.
    Tjaden, B., Haynor, D. R., Stolyar, S., Rosenow, C., and Kolker, E. (2002), Bioinformatics 18(Suppl. 1), S337-S344.PubMedGoogle Scholar
  51. 51.
    Storz, G. (2002), Science 296(5571), 1260–1263.PubMedCrossRefADSGoogle Scholar
  52. 52.
    DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997), Science 278(5338), 680–686.PubMedCrossRefADSGoogle Scholar
  53. 53.
    Richmond, C. S., Glasner, J. D., Mau, R., Jin, H., and Blattner, F. R. (1999), Nucleic Acids Res. 27(19), 3821–3835.PubMedCrossRefGoogle Scholar
  54. 54.
    Khodursky, A. B., Peter, B. J., Cozzarelli, N. R., Botstein, D., Brown, P. O., and Yanofsky, C. (2000), Proc. Natl. Acad. Sci. USA 97(22), 12,170–12,175.CrossRefGoogle Scholar
  55. 55.
    Zimmer, D. P., Soupene, E., Lee, H. L., Wendisch, V. F., Khodursky, A. B., Peter, B. J., Bender, R. A., and Kustu, S. (2000), Proc. Natl. Acad. Sci. USA 97(26), 14,674–14,679.CrossRefGoogle Scholar
  56. 56.
    Wei, Y., Lee, J. M., Richmond, C., Blattner, F. R., Rafalski, J. A., and LaRossa, R. A. (2001), J. Bacteriol. 183(2), 545–556.PubMedCrossRefGoogle Scholar
  57. 57.
    Polen, T., Rittmann, D., Wendisch, V. F., and Sahm, H. (2003), Appl. Environ. Microbiol. 69(3), 1759–1774.PubMedCrossRefGoogle Scholar
  58. 58.
    Wilson, M., DeRisi, J., Kristensen, H. H., Imboden, P., Rane, S., Brown, P. O., and Schoolnik, G. K. (1999), Proc. Natl. Acad. Sci. USA 96(22), 12,833–12,838.CrossRefGoogle Scholar
  59. 59.
    Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H., and Mizuno, T. (2002), Mol. Microbiol. 46(1), 281–291.PubMedCrossRefGoogle Scholar
  60. 60.
    de Saizieu, A., Certa, U., Warrington, J., Gray, C., Keck, W., and Mous, J. (1998), Nat. Biotechnol. 16(1), 45–48.PubMedCrossRefGoogle Scholar
  61. 61.
    Loos, A., Glanemann, C., Willis, L. B., O’Brien, X. M., Lessard, P. A., Gerstmeir, R., Guillouet, S., and Sinskey, A. J. (2001), Appl. Environ. Microbiol. 67(5), 2310–2318.PubMedCrossRefGoogle Scholar
  62. 62.
    Hayashi, M., Mizoguchi, H., Shiraishi, N., Obayashi, M., Nakagawa, S., Imai, J., Watanabe, S., Ota, T., and Ikeda, M. (2002), Biosci. Biotechnol. Biochem. 66(6), 1337–1344.PubMedCrossRefGoogle Scholar
  63. 63.
    Wendisch, V. F., Zimmer, D. P., Khodursky, A., Peter, B., Cozzarelli, N., and Kustu, S. (2001), Anal Biochem. 290(2), 205–213.PubMedCrossRefGoogle Scholar
  64. 64.
    Brazma, A., Parkinson, H., Sarkans, U., et al. (2003), Nucleic Acids Res. 31(1), 68–71.PubMedCrossRefGoogle Scholar
  65. 65.
    Diehn, M., Sherlock, G., Binkley, G., et al. (2003), Nucleic Acids Res. 31(1), 219–223.PubMedCrossRefGoogle Scholar
  66. 66.
    Gollub, J., Ball, C. A., Binkley, G., et al. (2003), Nucleic Acids Res. 31(1), 94–96.PubMedCrossRefGoogle Scholar
  67. 67.
    Conway, T., Kraus, B., Tucker, D. L., Smalley, D. J., Dorman, A. F., and McKibben, L. (2002), Biotechniques 32(1), 110, 112–114, 116, 118, 119.PubMedGoogle Scholar
  68. 68.
    Pan, W. (2002), Bioinformatics 18(4), 546–554.PubMedCrossRefGoogle Scholar
  69. 69.
    Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S., and Hatfield, G. W. (2000), J. Biol. Chem. 275(38), 29,672–29,684.CrossRefGoogle Scholar
  70. 70.
    Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998), Proc. Natl. Acad. Sci. USA 95(25), 14,863–14,868.CrossRefGoogle Scholar
  71. 71.
    Tamames, J., Clark, D., Herrero, J., Dopazo, J., Blaschke, C., Fernandez, J. M., Oliveros, J. C., and Valencia, A. (2002), J. Biotechnol. 98(2–3), 269–283.PubMedCrossRefGoogle Scholar
  72. 72.
    Sabatti, C., Rohlin, L., Oh, M. K., and Liao, J. C. (2002), Nucleic Acids Res. 30(13), 2886–2893.PubMedCrossRefGoogle Scholar
  73. 73.
    Niehrs, C. and Pollet, N. (1999), Nature 402(6761), 483–487.PubMedCrossRefADSGoogle Scholar
  74. 74.
    Niebisch, A. and Bott, M. (2001), Arch. Microbiol. 175(4), 282–294.PubMedCrossRefGoogle Scholar
  75. 75.
    Hacia, J. G., Brody, L. C., Chee, M. S., Fodor, S. P., and Collins, F. S. (1996), Nat. Genet. 14(4), 441–447.PubMedCrossRefGoogle Scholar
  76. 76.
    Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S., and Small, P. M. (1999), Science 284(5419), 1520–1523.PubMedCrossRefADSGoogle Scholar
  77. 77.
    Jishage, M. and Ishihama, A. (1997), J. Bacteriol. 179(3), 959–963.PubMedGoogle Scholar
  78. 78.
    Ochman, H. and Jones, I. B. (2000), EMBO J. 19(24), 6637–6643.PubMedCrossRefGoogle Scholar
  79. 79.
    Perkins, J. D., Health, J. D., Sharma, B. R., and Weinstock, G. M. (1993), J. Mol. Biol. 232(2), 419–445.PubMedCrossRefGoogle Scholar
  80. 80.
    Blattner, F. R., Plunkett, G. 3rd, Bloch, C. A., et al. (1997), Science 277(5331), 1453–1474.PubMedCrossRefGoogle Scholar
  81. 81.
    Zeppenfeld, T., Larisch, C., Lengeler, J. W., and Jahreis, K. (2000), J. Bacteriol. 182(16), 4443–4452.PubMedCrossRefGoogle Scholar
  82. 82.
    Bailey, J. E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W. A., and Tsai, P. S. (1996), Biotechnol. Bioeng. 52, 109–121.CrossRefGoogle Scholar
  83. 83.
    Ohnishi, J., Mitsuhashi, S., Hayashi, M., Ando, S., Yokoi, H., Ochiai, K., and Ikeda, M. (2002), Appl. Microbiol. Biotechnol. 58(2), 217–223.PubMedCrossRefGoogle Scholar
  84. 84.
    Cho, R. J., Fromont-Racine, M., Wodicka, L., Feierbach, B., Stearns, T., Legrain, P., Lockhart, D. J., and Davis, R. W. (1998), Proc. Natl. Acad. Sci. USA 95(7), 3752–3757.PubMedCrossRefADSGoogle Scholar
  85. 85.
    Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2001), Proc. Natl. Acad. Sci. USA 98(22), 12,712–12,717.CrossRefGoogle Scholar
  86. 86.
    Gill, R. T., Wildt, S., Yang, Y. T., Ziesman, S., and Stephanopoulos, G. (2002), Proc. Natl. Acad. Sci. USA 99(10), 7033–7038.PubMedCrossRefADSGoogle Scholar
  87. 87.
    Reitzer, L. (2003), Annu. Rev. Microbiol. 57, 155–176.PubMedCrossRefGoogle Scholar
  88. 88.
    Ikeda, T. P., Shauger, A. E., and Kustu, S. (1996), J Mol Biol. 259(4), 589–607.PubMedCrossRefGoogle Scholar
  89. 89.
    Burkovski, A. (2003), Arch. Microbiol. 179(2), 83–88.PubMedGoogle Scholar
  90. 90.
    Jakoby, M., Nolden, L., Meier-Wagner, J., Kramer, R., and Burkovski, A. (2000), Mol. Microbiol. 37(4), 964–977.PubMedCrossRefGoogle Scholar
  91. 91.
    Calvo, J. M. and Matthews, R. G. (1994), Microbiol. Rev. 58, 466–490.PubMedGoogle Scholar
  92. 92.
    Hung, S. P., Baldi, P., and Hatfield, G. W. (2002), J. Biol. Chem. 277(43), 40,309–40,323.CrossRefGoogle Scholar
  93. 93.
    Tani, T. H., Khodursky, A., Blumenthal, R. M., Brown, P. O., and Matthews, R. G. (2002), Proc. Natl. Acad. Sci. USA 99(21), 13,471–13,476.CrossRefGoogle Scholar
  94. 94.
    Radmacher, E., Vaitsikova, A., Burger, U., Krumbach, K., Sahm, H., and Eggeling, L. (2002), Appl. Environ. Microbiol. 68(5), 2246–2250.PubMedCrossRefGoogle Scholar
  95. 95.
    Eggeling, L., Morbach, S., and Sahm, H. (1997), J. Biotechnol. 56(Pt. 7), 167–182.CrossRefGoogle Scholar
  96. 96.
    Tauch, A., Hermann, T., Burkovski, A., Kramer, R., Puhler, A., and Kalinowski, J. (1998), Arch. Microbiol. 169(4), 303–312.PubMedCrossRefGoogle Scholar
  97. 97.
    Yang, J., Wang, P., and Pittard, A. J. (1999), J. Bacteriol. 181(20), 6411–6418.PubMedGoogle Scholar
  98. 98.
    Pittard, A. J. (1996), in Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt, F. C., ed., ASM Press, Washington, DC, pp. 458–484.Google Scholar
  99. 99.
    LaRossa, R. A., Van Dyk, T. K., and Smulski, D. R. (1987), J. Bacteriol. 169(4), 1372–1378.PubMedGoogle Scholar
  100. 100.
    Whipp, M. J., Camakaris, H., and Pittard, A. J. (1998), Gene 209(1–2), 185–192.PubMedCrossRefGoogle Scholar
  101. 101.
    Kirkpatrick, C., Maurer, L. M., Oyelakin, N. E., Yoncheva, Y. N., Maurer, R., and Slonczewski, J. L. (2001), J. Bacteriol. 183(21), 6466–6477.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee, S. Y. (1996), Trends Biotechnol. 14(3), 98–105.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Institute of Biotechnology 1, Research Center JülichJülichGermany

Personalised recommendations