Applied Biochemistry and Biotechnology

, Volume 118, Issue 1–3, pp 177–188

Differential thermal and thermogravimetric analyses of bound water content in cellulosic substrates and its significance during cellulose hydrolysis by alkaline active fungal cellulases

  • Santosh Vyas
  • S. D. Pradhan
  • N. R. Pavaskar
  • Anil Lachke
Article

Abstract

Various cellulosic substrates were examined for bound water content by differential thermal analysis (DTA) and thermogravimetry (TG). Samples were heated in the range of 30–100°C at a rate of 3°/min. DTA vaporization curves for different cellulose samples indicated that the bound water (Wb) was vaporized at higher temperature than free water (Wf) at the surface. Weight loss was observed in two stages, corresponding to Wf and Wb in TG curves. The bound water content was dependent on the degree of crystallinity of cellulose. Among different cellulosic substrates, Walseth cellulose showed the highest bound water content, and it also was found to be the least crystalline. The alkaline-active, alkali-stable cellulase was obtained from the alkalotolerant Fusarium sp. The substrate specificity and viscometric characteristics confirmed the enzyme to be an endoglucanase. The Wb content of Walseth cellulose was lowered during the enzymatic hydrolysis. The possible application of bound water analysis in understanding the hydrolysis of cellulosic substrates of different crystallinity is discussed.

Index Entries

Cellulose endoglucanase differential thermal analysis thermogravimetry bound water vaporization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gusakov, A. V., Sinitsyn, A. P., Berlin, A. G., Markov, A. V., and Ankudimova, N. V. (2000), Enzyme Microb. Technol. 27, 664–671.PubMedCrossRefGoogle Scholar
  2. 2.
    Cavaco-Paulo, A., Cortez, J., and Almeida, L. (1998), J. Soc. Dyers Colour 113, 218–222.CrossRefGoogle Scholar
  3. 3.
    Obendorf, S. K., Nielsen, V. S., and Fanφ, T. S. (2002), CHIMICA OGGI/Chem. Today 9, 40–44.Google Scholar
  4. 4.
    Hoshino, E. and Susumo, I. (1997), Enzymes in Detergency, vol. 9, Van Ee, J. H., Misset, O., Baas, E. J., eds., Marcel Dekker, New York, pp. 149–174.Google Scholar
  5. 5.
    Vyas, S., Lachke, A., and Absar, A. (2003), in Frontiers of Fungal Diversity in India, Rao, G. P., Manoharachari, C., Bhat, D. J., Rajak, R. C., and Lakhanpal, T. N., eds., International Book Distributing, Lucknow, India, pp. 143–159.Google Scholar
  6. 6.
    Goyal, A., Ghosh, B., and Eveleigh, D. (1991), Bioresour. Technol. 3, 37–50.CrossRefGoogle Scholar
  7. 7.
    Vyas, S. and Lachke, A. (2003), Enzyme Microb. Technol. 32, 236–245.CrossRefGoogle Scholar
  8. 8.
    Mansfield, S. D., Mooney, C., and Saddler, J. N. (1999), Biotechnol. Prog. 15, 804–816.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu, W. G. and Yao, K. D. (2001), Polymer 42, 3943–3947.CrossRefGoogle Scholar
  10. 10.
    Hatakeyama, H. and Hatakeyama, T. (1998), Thermochim. Acta 308, 3–22.CrossRefGoogle Scholar
  11. 11.
    Maloney, T. C., Paulapuro, H., and Stenius, P. (1998), Nord. Pulp Pap. Res. J. 13, 31–36.Google Scholar
  12. 12.
    Pierlot, A. P. (1999), Textile Res. J. 69, 97–103.Google Scholar
  13. 13.
    Bhaskar, G., Ford, J. L., and Hollingsbee, D. A. (1998), Thermochim. Acta 322, 153–165.CrossRefGoogle Scholar
  14. 14.
    Capitani, D., Emanuele, M. C., Bella, J., Segre, A. L., Attanasio, D., Focher, D., and Capretti, G. (1999), TAPPI J. 82, 117–124.Google Scholar
  15. 15.
    Hatakeyama, T. and Hatakeyama, H. (1992), in Viscoelasticity of Biomaterials, vol. 489, Glasser, W. and Hatakeyama, H., eds., ACS symposium series, American Chemical Society, Washington, DC, pp. 329–340.Google Scholar
  16. 16.
    Svedas, V. (2000), Appl. Spectrosc. 54, 420–425.CrossRefADSGoogle Scholar
  17. 17.
    Weise, U. and Paulapuro, H. (1999), J. Pulp Pap. Sci. 25, 163–166.Google Scholar
  18. 18.
    Maloney, T. C. (2000), Acta Polytech. Scand. Chem. Technol. Ser. 275, 1–52.Google Scholar
  19. 19.
    Maloney, T. C., Johansson, T., and Paulapuro, H. (1998), Pap. Technol. 39, 44–47.Google Scholar
  20. 20.
    McCrystal, C. B., Ford, J. L., Rajabi, S., and Ali, R. (1999), J. Pharm. Sci. 88, 792–796.PubMedCrossRefGoogle Scholar
  21. 21.
    Hardy, B. J. and Sarko, I. (1996), Appl. Polymers 37, 1833–1839.Google Scholar
  22. 22.
    Kondo, T. and Sawatri, C. (1996), Polymers 37, 393–398.CrossRefGoogle Scholar
  23. 23.
    Wood, T. M. (1971), Biochem. J. 121, 353–362.PubMedGoogle Scholar
  24. 24.
    Reese, E. T. and Mandels, M. (1963), in Methods in Carbohydrate Chemistry, Whistler, L., ed., Academic, New York, pp. 139–143.Google Scholar
  25. 25.
    Vyas, S., Absar, A., and Lachke, A. (2003), in Microbiology and Biotechnology for Sustainable Development, Jain, P. C., ed., CBS Publishers, New Delhi, India, pp. 283–292.Google Scholar
  26. 26.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randfall, R. L. (1951), J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  27. 27.
    Sathivel, C., Lachke, A., and Radhakrishnan, S. (1995), J. Chromatogr. A 705, 400–405.CrossRefGoogle Scholar
  28. 28.
    Miller, G. L., Blum, R., Gelnnon, W. E., and Burton, A. (1960), Anal. Biochem. 2, 127–132.CrossRefGoogle Scholar
  29. 29.
    Sadana, J. C., Lachke, A. H., and Patil, R. V. (1984), Carbohydr. Res. 133, 297–312.CrossRefGoogle Scholar
  30. 30.
    Hurst, P. L., Nielsen, J., Sullivan, P. A., and Shepherd, M. G. (1977), Biochem. J. 165, 33–41.PubMedGoogle Scholar
  31. 31.
    Segal, L., Creely, J. J., Martin, A. E., and Conrad, C. M. (1959), Textile Res. J. 29, 786–793.Google Scholar
  32. 32.
    Durand, H., Soucaille, P., and Tiraby, G. (1984), Enzyme Microb. Technol. 6, 175–180.CrossRefGoogle Scholar
  33. 33.
    Christakopoulos, P., Kekos, D., Macris, B. J., Claeyssens, M., and Bhat, M. K. (1995), J. Biotechnol. 39, 85–93.CrossRefGoogle Scholar
  34. 34.
    Hong, S. W., Hah, Y. C., Maeng, P., and Jeong, C. S. (1986), Enzyme Microb. Technol. 8, 227–235.CrossRefGoogle Scholar
  35. 35.
    Beldman, G., Searle-Van Leewen, M. F., Rombouts, F. M., and Voragen, F. G. J. (1985), Eur. J. Biochem. 146, 301–308.PubMedCrossRefGoogle Scholar
  36. 36.
    Bhat, K. M., McCrae, S. I., and Wood, T. M. (1989), Carbohydr. Res. 190, 279–329.CrossRefGoogle Scholar
  37. 37.
    Hatakeyama, T., Ikeda, M., and Hatakeyama, H. (1987), in Cellulose and Its Derivatives, Kennedy, J. F., Phyllips, G. O., Wedlock, D. J., and Williams, P. A., eds., Ellis Horwood, Chichester, UK, p. 23.Google Scholar
  38. 38.
    Hatakeyama, T. and Liu, Z. (1998), in Handbook of Thermal Analysis, Wiley, New York.Google Scholar
  39. 39.
    Hoffmann, K. and Hatakeyama, H. (1995), Macromol. Chem. Phys. 196, 99–113.CrossRefGoogle Scholar
  40. 40.
    Nakamura, K., Hatakeyama, T., and Hatakeyama, H. (1981), Textile Res. J. 53, 607–613.Google Scholar
  41. 41.
    Hatakeyama, T., Nakamura, K., and Hatakeyama, H. (2000), Thermochim. Acta 352–353, 233–239.CrossRefGoogle Scholar
  42. 42.
    Froix, M. F. and Nelson, R. (1975), Macromolecules 8, 726–730.CrossRefGoogle Scholar
  43. 43.
    Magane, F. C., Portas, H. J., and Wakeham, H. (1947), J. Am. Chem. Soc. 69, 1896–1902.CrossRefGoogle Scholar
  44. 44.
    Long, F. A. and Richman, D. (1960), J. Am. Chem. Soc. 82, 513–519.CrossRefGoogle Scholar
  45. 45.
    Murata, M., Hoshino, E., Yokosuka, M., and Suzuki, A. (1993), J. Am. Oil Chem. Soc. 70, 153–158.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Santosh Vyas
    • 1
  • S. D. Pradhan
    • 2
  • N. R. Pavaskar
    • 2
  • Anil Lachke
    • 1
  1. 1.Division of Biochemical SciencesNational Chemical LaboratoryPuneIndia
  2. 2.Physical Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations