Applied Biochemistry and Biotechnology

, Volume 115, Issue 1–3, pp 1115–1126 | Cite as

Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates

  • Zhizhuang Xiao
  • Xiao Zhang
  • David J. Gregg
  • John N. Saddler
Session 6A Biomass Pretreatment and Hydrolysis


A quantitative approach was taken to determine the inhibition effects of glucose and other sugar monomers during cellulase and β-Glucosidase hydrolysis of two types of cellulosic material: Avicel and acetic acid-pretreated softwood. The increased glucose content in the hydrolysate resulted in a dramatic increase in the degrees of inhibition on both β-Glucosidase and cellulase activities. Supplementation of mannose, xylose, and galactose during cellobiose hydrolysis did not show any inhibitory effects on β-Glucosidase activity. However, these sugars were shown to have significant inhibitory effects on cellulase activity during cellulose hydrolysis. Our study suggests that high-substrate consistency hydrolysis with supplementation of hemicellulose is likely to be a practical solution to minimizing end-product inhibition effects while producing hydrolysate with high glucose concentration.

Index Entries

β-Glucosidase cellulase degree of inhibition softwood glucose hydrolysate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Galbe, M. and Zacchi, G. (2002), Appl. Microbiol. Biotechnol. 59, 618–628.PubMedCrossRefGoogle Scholar
  2. 2.
    Sun, Y. and Cheng, J. Y. (2002), Bioresour. Technol. 83, 1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim, J., Seok, L. Y. Y., and Torget, R. W. (2001), Appl. Biochem. Biotechnol. 91–93, 331–340.PubMedCrossRefGoogle Scholar
  4. 4.
    Duff, S. J. B. and Murray, W. D. (1996), Bioresour. Technol. 55, 1–33.CrossRefGoogle Scholar
  5. 5.
    Hsu, T. (1996), Handbook of Bioethanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp. 179–212.Google Scholar
  6. 6.
    Gusakov, A. V. and Sinitsyn, A. P. (1992), Biotechnol. Bioeng. 40, 663–671.CrossRefGoogle Scholar
  7. 7.
    Dekker, R. F. H. (1986), Biotechnol. Bioeng. 28, 1438–1442.CrossRefGoogle Scholar
  8. 8.
    Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotechnol. Bioeng. 36, 275–287.CrossRefGoogle Scholar
  9. 9.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1993), Enzyme Microbial. Technol. 15, 19–25.CrossRefGoogle Scholar
  10. 10.
    Gregg, D. J. and Saddler, J. N. (1996), Biotechnol. Bioeng. 51, 375–383.CrossRefGoogle Scholar
  11. 11.
    Ohmine, K., Ooshima, H., and Harano, Y. (1983), Biotechnol. Bioeng. 25, 2041–2053.CrossRefGoogle Scholar
  12. 12.
    Holtzapple, M. T., Caram, H. S., and Humphrey, A. E. (1984), Biotechnol. Bioeng. 26, 753–757.CrossRefGoogle Scholar
  13. 13.
    Scheiding, W., Thoma, M., Ross, A., and Schuegerl, K. (1984), Appl. Microbiol. Biotechnol. 20, 176–182.CrossRefGoogle Scholar
  14. 14.
    Tengborg, C., Galbe, M., and Zacchi, C. (2001), Enzyme Microbial. Technol. 28, 835–844.CrossRefGoogle Scholar
  15. 15.
    Wood, T. M. and Bhat, K. M. (1988), in Methods in Enzymology, vol. 160, Wood, W. and Kellogg, S., eds., Academic, New York, NY, pp. 87–112.Google Scholar
  16. 16.
    Boussaid, A. L., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., and Saddler, J. N. (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Gong, C.-S., Ladisch, M. R., Tsao, G. T. (1977), Biotechnol. Bioeng. 19, 959–981.PubMedCrossRefGoogle Scholar
  18. 18.
    Montero, M. and Romeu, A. (1992), Appl. Microbiol. Biotechnol. 38, 350–353.CrossRefGoogle Scholar
  19. 19.
    Yeoh, H. H., Tan, T. K., and Koh, S. K. (1986), Appl. Microbiol. Biotechnol. 25, 25–28.CrossRefGoogle Scholar
  20. 20.
    Asenjo, J. A. (1983), Biotechnol. Bioeng. 25, 3185–3190.CrossRefGoogle Scholar
  21. 21.
    Rao, M., Seeta, R., and Deshpande, V. (1989), Biotechnol. Appl. Biochem. 11, 477–482.Google Scholar
  22. 22.
    Beltrame, P. L., Carniti, P., Focher, B., Marzetti, A., and Sarto, V. (1984), Biotechnol. Bioeng. 26, 1233–1238.CrossRefGoogle Scholar
  23. 23.
    Mosolova, T. P., Kalyuzhnyi, S. V., Varfolomeyev, S. D., and Velikodvorskaya, G. A. (1993), Appl. Biochem. Biotechnol. 42, 9–18.PubMedGoogle Scholar
  24. 24.
    Hadj-Taieb, N., Chaabouni-Ellouz, S., Kammoun, A., and Ellouz, R. (1992), Appl. Microbiol. Biotechnol. 37, 197–201.CrossRefGoogle Scholar
  25. 25.
    Murray, W. D. (1987), Biotechnol. Bioeng. 29, 1151–1154.CrossRefGoogle Scholar
  26. 26.
    Breuil, C., Chan, M., and Saddler, J. N. (1990), Appl. Microbiol. Biotechnol. 34, 31–35CrossRefGoogle Scholar
  27. 27.
    Dekker, F. F. H. and Wallis, A. F. A. (1983), Biotechnol. Bioeng. 25, 3027–3048.CrossRefGoogle Scholar
  28. 28.
    Zacchi, G. and Axelsson, A. (1989), Biotechnol. Bioeng. 34, 223–233.CrossRefGoogle Scholar
  29. 29.
    Larsson, M., Galbe, M., and Zacchi, G. (1997), Bioresourc. Technol. 60, 143–151.CrossRefGoogle Scholar
  30. 30.
    Saha, B. C., Freer, S. N., and Bothast, R. J. (1994), Appl. Environ. Microbiol. 60, 3774–3780.PubMedGoogle Scholar
  31. 31.
    Yun, S. I., Jeong, C.-S., Chung, D.-K., and Choi, H.-S. (2001), Biosci. Biotechnol. Biochem. 65, 2028–2032.PubMedCrossRefGoogle Scholar
  32. 32.
    Klyosov, A. A., Sinitsyn, A. P., and Rabinowitch, M. L. (1980), Enzyme Eng. 5, 153–165.Google Scholar
  33. 33.
    Sjostrom, E. (1981) Wood Chemistry: Fundamentals and Applications, Academic, San Diego, CA.Google Scholar
  34. 34.
    Fengel, D. and Wegener, G. (1984), Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Zhizhuang Xiao
    • 1
  • Xiao Zhang
    • 1
  • David J. Gregg
    • 1
  • John N. Saddler
    • 1
  1. 1.Forest Products BiotechnologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations