Comparison of microbial inhibition and enzymatic hydrolysis rates of liquid and solid fractions produced from pretreatment of biomass with carbonic acid and liquid hot water

Session 6A Biomass Pretreatment and Hydrolysis

Abstract

This research quantified the enzymatic digestibility of the solid component and the microbial inhibition of the liquid component of pretreated aspen wood and cornstover hydrolysates. Products of liquid hot water and carbonic acid pretreatment were compared. Pretreatment temperatures tested ranged from 180 to 220°C, and reaction times were varied between 4 and 64 min. Both microbial inhibition rates and enzymatic hydrolysis rates showed no difference between pretreatments containing carbonic acid and those not containing no carbonic acid. Microbial inhibition increased as the reaction severity increased, but only above a midpoint severity parameter of 200°C for 16 min. Both the rates and yields of enzymatic hydrolysis displayed an increase from the lowest tested reaction severity to the highest tested reaction severity.

Index Entries

Carbonic acid pretreatment hydrolysis corn stover aspen wood 

References

  1. 1.
    McMillan, J. D., (1994), in ACS Symposium Series No. 566, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., American Chemical Society, Washington, DC, pp. 292–324.Google Scholar
  2. 2.
    Bouchard, J., Overend, R. P., and Chornet, E., (1992), J. Wood Chem. Technol. 12(3), 335–354.CrossRefGoogle Scholar
  3. 3.
    Quang, A. N., Tucker, M. P., Keller, F. A., and Eddy, F. P., (2000), Appl. Biochem. Biotechnol. 84–86, 561–576.Google Scholar
  4. 4.
    Torget, R., Hatzis, C., Hayward, T. K., Hsu, T., and Phillipidis, G. P., (1996), Appl. Biochem. Biootechnol. 57/58, 85–101.Google Scholar
  5. 5.
    Torget, R. W., Kim, J. S., and Lee, Y. Y., (2000), Ind. Eng. Chem. Res. 39, 2817–2825.CrossRefGoogle Scholar
  6. 6.
    Wooley, R., Ruth, M., Glassner, D., and Sheehan, J., (1999), Biotechnol. Prog. 15, 794–803.PubMedCrossRefGoogle Scholar
  7. 7.
    Boussaid, A. L., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., and Saddler, J. N., (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.PubMedCrossRefGoogle Scholar
  8. 8.
    Brownell, H. H., and Saddler, J. N., (1987), Biotechnol. Bioeng. 29, 228–235.CrossRefGoogle Scholar
  9. 9.
    Montane, D., Farriol, X., Salvado, J., Jollez, P., and Chornet, E., (1998), J. Wood Chem. Technol. 18(2), 171–191.Google Scholar
  10. 10.
    Clark, T. A., Mackie, K. L., Dare, P. H., and McDonald, A. G., (1989), J. Wood Chem. Technol. 9(2), 135–166.Google Scholar
  11. 11.
    Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N., (1985), J. Wood Chem. Technol. 5(3), 405–425.Google Scholar
  12. 12.
    Schell, D., Nguyen, Q., Tucker, M., and Boynton, B., (1998), Appl. Biochem. Biotechnol. 70–72, 17–24.Google Scholar
  13. 13.
    Dale, B. E., Weaver, J., and Byers, F. M., (1999), Appl. Biochem. Biotechnol. 77–79, 35–45.CrossRefGoogle Scholar
  14. 14.
    Holtzapple, M. T., Lundeen, J. E., Sturgis, R., Lewis, J. E., and Dale, B. E., (1992), Appl. Biochem. Biotechnol. 34/35, 5–21.Google Scholar
  15. 15.
    Wang, L., Dale, B. E., Yurttas, L., and Goldwasser, I., (1998), Appl. Biochem. Biotechnol. 70–72, 51–66.Google Scholar
  16. 16.
    Avgerinos, G. C. and Wang, D. I. C., (1983), Biotechnol. Bioeng. 15, 67–83.CrossRefGoogle Scholar
  17. 17.
    Bouchard, J., Lacelle, S., Chornet, E., Vidal, P. F., and Overend, R. P., (1993), Holzforschung 47(4), 291–296.CrossRefGoogle Scholar
  18. 18.
    Allen, S. G., Kam, L. C., Zemann, A. J., and Antal Jr., M. J., (1996), Ind. Eng. Chem. Res. 35(8), 2709–2715.CrossRefGoogle Scholar
  19. 19.
    Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J., Laser, M., and Lynd, L. R., (2001), Ind. Eng. Chem. Res. 40, 2934–2941.CrossRefGoogle Scholar
  20. 20.
    Mok, W. S. L., and Antal Jr., M. J., (1992), Ind. Eng. Chem. Res. 31(4), 1157–1161.CrossRefGoogle Scholar
  21. 21.
    van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., and Lynd, L. R., (1996), Appl. Biochem. Biotechnol. 54/55, 157–170.CrossRefGoogle Scholar
  22. 22.
    Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T., and Arai, K., (2000), Ind. Eng. Chem. Res. 39, 2882–2890.CrossRefGoogle Scholar
  23. 23.
    McWilliams, R. C., and van Walsum, G. P., (2002), Appl. Biochem. Biotechnol. 98–100, 109–134.PubMedCrossRefGoogle Scholar
  24. 24.
    Puri, V. P., and Mamers, H., (1983), Biotechnol. Bioeng. 25, 3149–3161.CrossRefGoogle Scholar
  25. 25.
    van Walsum, G. P. (2001), Appl. Biochem. Bioetechnol. 91–93, 317–329.CrossRefGoogle Scholar
  26. 26.
    Heitz, M., E. Capek-Menard, P. G. Koeberle, J. Gagne, E. Chornet, Overend, R. P., and Taylor, E. Y., (1991), Bioresour. Technol. 35, 23–32.CrossRefGoogle Scholar
  27. 27.
    Shi, H. and van Walsum, G. P. (2004) Bioresourc. Technol., in press.Google Scholar
  28. 28.
    Overend, R. P. and Chornet, E., (1987), Philos. Trans. R. Soc. Lond. A321: 523–536.ADSGoogle Scholar
  29. 29.
    Palmqvist, E. and Hähn-Hagerdal, B. (2000), Bioresour. Technol. 74, 17–24.CrossRefGoogle Scholar
  30. 30.
    Ruiz, R. and Ehrman, T. (1996), Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography, Laboratory Analytical Procedure No. LAP-002, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  31. 31.
    McWilliams, R. (2002), MSthesis, Department of Environmental Studies, Baylor University, Waco, TX.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Chemical Division (Concepts)US Army Maneuver Support Center (MANSCEN), Directorate of Combat DevelopmentsFort Leonard Wood
  2. 2.Department of Environmental Studies and Glasscock Energy Research CenterBaylor UniversityWaco

Personalised recommendations