Applied Biochemistry and Biotechnology

, Volume 114, Issue 1–3, pp 509–523 | Cite as

Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility

Session 3—Bioprocessing, Including Separations


Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40% of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time, and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars, 56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the glucose to ethanol efficiently.

Index Entries

Corn stover pretreatment steam explosion hydrolysis bioethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyons, T. P., Kelsall, D., and Murtagh, J. eds. (1995), The, Alcohol Textbook, Nottingham University Press, Nothingam, UK.Google Scholar
  2. 2.
    Mielenz, J. R. (2001), Curr. Opin. Microbiol 4, 324–329.PubMedCrossRefGoogle Scholar
  3. 3.
    Von Sivers, M. and Zacchi, G., (1996), Bioresour. Technol. 56, 131–140.CrossRefGoogle Scholar
  4. 4.
    Hungarian Central Statistical Office. (2001), Statistical Annual Reviews of the Hungarian Agriculture, Hungarian Central Statistical Office, Budapest, Hungary.Google Scholar
  5. 5.
    Sokhansanj, S., Turhollow, A., Cushman, J., and Cundi, J., (2002), Biomass Bioenergy 23, 347–355.CrossRefGoogle Scholar
  6. 6.
    Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Elshafei, A. M., Vega, J. L., Klasson, K. T., Clausen, E. C., and Gaddy, J. L. (1991), Bioresour. Technol. 35, 73–80.CrossRefGoogle Scholar
  8. 8.
    Brownell, H. H. and Saddler, J. N. (1984), Biotechnol. Bioeng. Symp. 14, 55–68.Google Scholar
  9. 9.
    Clark, T. A. and Mackie, K. L. (1987), J. Wood Chem. Technol. 7(3), 373–403.Google Scholar
  10. 10.
    Schmidt, A. S., Puls, J., and Bjerre, A. B., (1996), in Biomass for Energy and Environment Proceedings of the 9th European Bioenergy Conference vol. 3, Chartier, P., Ferrero, G. L., Henius, U. M., Hultberg, S., Sachau, J. and Wiinbland, M., eds. Pergamon, Oxford, UK, pp. 1510–1515.Google Scholar
  11. 11.
    Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997), Bioresour. Technol. 59, 129–136.CrossRefGoogle Scholar
  12. 12.
    Saddler, J. N., Ramos, L. P., and Breuil, C. (1993), in Bioconversion of Forest and Agricultural Plant Residues, C.A.B. International, Wallingford, UK, pp. 73–91.Google Scholar
  13. 13.
    Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P., and Ballesteros, M. (2002), Process Biochem. 38, 187–192.CrossRefGoogle Scholar
  14. 14.
    Vlasenko, E. Y., Ding, H., Labavitch, J. M., and Shoemaker S. P. (1997), Bioresour. Technol. 59, 109–119.CrossRefGoogle Scholar
  15. 15.
    Stenberg, K., Tenborg, C., Galbe, M., and Zacchi G. (1998), Appl. Biochem. Biotechnol. 71, 299–308.Google Scholar
  16. 16.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1996), Enzyme Microb. Technol. 19(3), 220–225.CrossRefGoogle Scholar
  17. 17.
    Klinke, H. B., Ahring, B. K., Schmidt A. S., and Thomsen, A. B. (2002), Bioresour. Technol. 82(1), 15–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1999), Enzyme Microb. Technol., 19(6), 470–476.CrossRefGoogle Scholar
  19. 19.
    Karr, W. E., Cool, L. G., Marriman, M. M., and Brink, D. L. (1991), J. Wood, Chem. Technol. 11, 447–463.Google Scholar
  20. 20.
    Eklund, R., Galbe, M., and Zacchi, G. (1988), J. Wood, Chem. Technol. 8(3), 379–392.Google Scholar
  21. 21.
    Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.PubMedGoogle Scholar
  22. 22.
    Berghem, L. E. R. and Petterson, L. G. (1974), Eur. J. Biochem. 46, 295–305.PubMedCrossRefGoogle Scholar
  23. 23.
    Varga, E., Szengyel, Z., and Réczey, K. (2002), Appl. Biochem. Biotechnol. 98–100, pp. 73–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Garrote, G., Dominguez, H., and Parajó J. C. (2002), Process Biochem. 37, 1067–1073.CrossRefGoogle Scholar
  25. 25.
    Tenborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmquist, E., and Hahn-Hägerdal, B. (1998), Appl. Biochem. Biotechnol. 70–72, 3–15.Google Scholar
  26. 26.
    Larsson, S., Palmquist, E., Hahn-Hägerdal, B., Tenborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N. O. (1999), Enzyme Microb. Technol. 24, 151–158.CrossRefGoogle Scholar
  27. 27.
    Varga, E., Schmidt, A. S., Réczey, K., and Thomsen, A. B. (2002), Appl. Biochem. Biotechnol. 104, 37–49.CrossRefGoogle Scholar
  28. 28.
    Olsson, L. and Hahn-Hägerdal, B. (1993), Proc. Biochem. 28, 249–257.CrossRefGoogle Scholar
  29. 29.
    Hahn-Hägerdal, B., Lindén, T., Senac, T., and Skoong, K. (1991), Appl. Biochem. Biotechnol. 28/29, 131–134.CrossRefGoogle Scholar
  30. 30.
    Stenberg, K., Bollók, M., Réczey, K., Galbe, M., and Zacchi, G. (2000), Biotechnol. Bioeng. 68, 204–210.PubMedCrossRefGoogle Scholar
  31. 31.
    Stenberg, K., Galbe, M., and Zacchi, G. (2000), Enzyme Microb. Technol. 26, 71–79.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Department of Agricultural Chemical TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Chemical Engineering 1Lund UniversityLundSweden

Personalised recommendations