Applied Biochemistry and Biotechnology

, Volume 114, Issue 1–3, pp 347–360 | Cite as

Effect of corn stover concentration on rheological characteristics

Session 2—Introduction to Microbial Catalysis and Engineering

Abstract

Corn stover, a well-known example of lignocellulosic biomass, is a potential renewable feed for bioethanol production. Dilute sulfuric acid pretreatment removes hemicellulose and makes the cellulose more susceptible to bacterial digestion. The rheologic properties of corn stover pretreated in such a manner were studied. The Power Law parameters were sensitive to corn stover suspension concentration becoming more non-Newtonian with slope n, ranging from 0.92 to 0.05 between 5 and 30% solids. The Casson and the Power Law models described the experimental data with correlation coefficients ranging from 0.90 to 0.99 and 0.85 to 0.99, respectively. The yield stress predicted by direct data extrapolation and by the Herschel-Bulkley model was similar for each concentration of corn stover tested.

Index Entries

Corn stover rheological measurement shear stress shear rate non-Newtonian fluids Power Law parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. (1997), Bioresour. Technol. 59, 129–136.CrossRefGoogle Scholar
  2. 2.
    McMillan, J. D. (1997), Renewable Energy 10(2/3), 295–302.CrossRefGoogle Scholar
  3. 3.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Wooley, R. J. (2000), Enzyme Microb. Technol. 27, 240–247.PubMedCrossRefGoogle Scholar
  4. 4.
    Kemblowski, L. and Kristiansen, B. (1986), Biotechnol. Eng. 28, 1474–1483.Google Scholar
  5. 5.
    Metz, B., Kossen, N. W. F., and Van Suijdam, J. C. (1979), Adv. Biochem. Eng. 11, 103–155.Google Scholar
  6. 6.
    Charles, M. (1978), Adv. Biochem. Eng. 8, 1–62.Google Scholar
  7. 7.
    Svihla, C. K., Dronawat, S. N., and Hanley, T. R. (1995), Appl. Biochem. Biotechnol. 51/52, 355–366.Google Scholar
  8. 8.
    Allen, D. G. and Robinson, C. W. (1990), Chem. Eng. Sci. 45(1), 37–48.CrossRefGoogle Scholar
  9. 9.
    Dronawat, S. N., Rieth, T. C., Svihla, C. K., and Hanley, T. R. (1996), in Proceedings of the 5 th World Congress of Chemical Engineering, vol. 1. American Institute of Chemical Engineers, New York, NY, p. 629.Google Scholar
  10. 10.
    Svihla, C. K., Dronawat, S. N., Donnelly, J. A., Rieth, T. C., and Hanley, T. R. (1997), Appl. Biochem. Biotechnol. 63/65, 375–385.CrossRefGoogle Scholar
  11. 11.
    Nguen, Q. D. and Boger, D. V. (1992), Annu. Rev. Fluid Mech. 24, 47–88.CrossRefADSGoogle Scholar
  12. 12.
    Pimenova, N. V. and Hanley, T. R. (2003), Appl. Biochem. Biotechnol. 105/108, 383–392.CrossRefGoogle Scholar
  13. 13.
    Dronawat, S. N. (1996), PhD thesis, University of Louisville, Louisville, KY.Google Scholar
  14. 14.
    Joch, R. E. C. (1993), MS thesis, University of Louisville, Louisville, KY.Google Scholar
  15. 15.
    Donnelly, J. A. (1995) MS thesis, University of Louisville, Louisville, KY.Google Scholar
  16. 16.
    Rieth, T. C. (1997) MS thesis, University of Louisville, Louisville, KY.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of LouisvilleLouisville
  2. 2.Auburn UniversityAuburn

Personalised recommendations