Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 307–319 | Cite as

Studies on immobilizd lipase in hydrophobic sol-gel

  • Cleide M. F. Soares
  • Onelia A. dos Santos
  • Heizir F. de Castro
  • Flavio F. de Moraes
  • Gisella M. ZaninEmail author
Article

Abstract

The hydrolysis of tetraethoxysilane using the sol-gel process was used to produce silica matrices, and these were tested for the immobilization of lipase from Candida rugosa by three methods: physical adsorption, covalent binding, and gel entrapment in the presence and absence of polyethylene glycol (PEG-1450). The silica matrices and their derivatives were characterized regarding particle size distribution, specific surface area, pore size distribution (Brunauer, Emmett, and Teller [B.E.T.] method), yield of grafting (thermogravimetric analyzer [TGA]), and chemical composition (Fourier transform infrared). Immobilization yields based on recovered lipase activity varied from 3.0 to 32.0%, and the highest efficiency was attained when lipase was encapsulated in the presence of PEG.

Index Entries

Silica matrices immobilization lipase additive sol-gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Unger, K. K. (1979), Porous Silica: Its Properties and Use as Support in Column Liquid Chromatography, Elsevier, New York, NY.Google Scholar
  2. 2.
    Kauffmann, C. and Mandelbaum, R. T. (1998), J. Biotechnol. 62, 169–176.CrossRefGoogle Scholar
  3. 3.
    Reetz, M. T., Zonta, A., and Simpelkamp, J. (1996), Biotechnol. Bioeng. 49, 527–534.CrossRefGoogle Scholar
  4. 4.
    Pierre, A. and Buisson, P. (2001), J. Mol. Catal. B: Enzymatic 11, 639–647.CrossRefGoogle Scholar
  5. 5.
    Buisson, P., Hernandez, C., Pierre, M., and Pierre, A. C. (2001), J. Non-Crystalline Solids 285, 295–302.CrossRefGoogle Scholar
  6. 6.
    Siouffi, A. M. (2003), J. Chromatogr. 1000, 801–818.CrossRefGoogle Scholar
  7. 7.
    Bosley, J. A. and Peilow, A. D. (1997), J. Amer. Oil Chem. Soc. 74(2), 107–111.CrossRefGoogle Scholar
  8. 8.
    Ramos, M. A., Gil, M. H., Schact, E., Matthys, G., Mondelaers, W., and Figueiredo, M. M. (1998), Powder Technol. 99, 79–85.CrossRefGoogle Scholar
  9. 9.
    Dutoit, D.C. M., Schneider, M., Fabrizioli, P., and Baiker, A. (1996), Chem. Mater. 8, 734–743.CrossRefGoogle Scholar
  10. 10.
    Pereira, E. B. (1999) MS thesis, Chemical Engineering Department, State University of Maringa, Maringa-PR, Brazil.Google Scholar
  11. 11.
    Soares, C. M. F., Castro, H. F., Moraes, F. F., and Zanin, G. M. (1999), Appl. Biochem. Biotechnol. 77–79, 745–758.PubMedCrossRefGoogle Scholar
  12. 12.
    Soares, C. M. F., Castro, H. F., Santana, M. H., and Zanin, G. M. (2001), Appl. Biochem. Biotechnol. 91–93, 715–719.Google Scholar
  13. 13.
    Soares, C. M. F., Castro, H. F., Santana, M. H., and Zanin, G. M. (2002), Appl. Biochem. Biotechnol. 98–100, 703–718.Google Scholar
  14. 14.
    Keeling-Tucker, T., Rakic, M., Spong, C., and Brennan, J. D. (2000), Chem. Mater. 12, 3695–4704.CrossRefGoogle Scholar
  15. 15.
    Al-Duri, B. and Yong, Y. P. (2000), Biocheml. Eng. J. 4, 207–215.CrossRefGoogle Scholar
  16. 16.
    Ravikovitch, P. I. and Neimark, A. V. (2000), Langmuir 18, 9830–9837.CrossRefGoogle Scholar
  17. 17.
    Assis, O. B. G. (2003), Braz. J. Chem. Eng. 20(3), 339–342.CrossRefGoogle Scholar
  18. 18.
    De Castro, H. F., Oliveira, P. C., Soares, C. M. F., and Zanin, G. M. (1999), J. Amer. Oil Chem. Soc. 76(1), 125–131.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Cleide M. F. Soares
    • 1
  • Onelia A. dos Santos
    • 1
  • Heizir F. de Castro
    • 2
  • Flavio F. de Moraes
    • 1
  • Gisella M. Zanin
    • 1
    Email author
  1. 1.Department of Chemical EngineeringState University of MaringaMaringa-PRBrazil
  2. 2.Department of Chemical EngineeringFaculdade de Engenharia Quimica de LorenaLorena-SPBrazil

Personalised recommendations