Applied Biochemistry and Biotechnology

, Volume 110, Issue 1, pp 53–60 | Cite as

Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems

Article

Abstract

Encapsulation within calcium alginate gel capsules was used to produce acoimmobilized enzyme system. Glucose oxidase (GOD) and catalase (CAT) were chosen as model enzymes. The same values of Vmax and Kmapp for the GOD encapsulated system and for the GOD-CAT coencapsulated system were calculated. When gel beads and capsules were compared, the same catalyst deactivation sequence for the two enzymes was observed. However, when capsules were employed as immobilization support, GOD efficiencies were higher than for the gel beads. These results were explained in terms of the structure of the capsules.

Index Entries

Calcium alginate gel capsules gel beads coimmobilization glucose oxidase catalase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nigam, S. C., Tsao, I. F., Sakoda, A., and Wang, H. Y. (1988), Biotechnol. Technol. 2, 271–276.CrossRefGoogle Scholar
  2. 2.
    Chang, T. M. S., McIntosh, F. C., and Mason, F. G. (1966), Can. J. Physiol. Pharmacol. 44, 115.Google Scholar
  3. 3.
    Skjak-Braek, G. and Martinsen, A. (1991), in Seaweed Resources in Europe: Uses and Potential, Guiry, M. D. and Blunden, G., eds., CRC Press, New York, p. 219.Google Scholar
  4. 4.
    Christenson, L., Dionne, K., and Lysaught, M. (1993), in Fundamentals of Animal Cell Encapsulation, Goosen, F. A., ed., CRC Press, New York, pp. 7–41.Google Scholar
  5. 5.
    Indergaard, M. and Skjak-Braek, G. (1987), Hydrobiologia 151/152, 541–543.CrossRefGoogle Scholar
  6. 6.
    Linker, A. and Jones, R. S. (1966), J. Biol. Chem. 241, 3845–3851.Google Scholar
  7. 7.
    Haug, A. (1959), Acta Chem. Scand. 13, 601–603.Google Scholar
  8. 8.
    Grasdalen, H., Larsen, H., and Smidsrød, O. (1981), Carbohydr. Res. 89, 179–184.CrossRefGoogle Scholar
  9. 9.
    Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D. (1973), FEBS Lett. 32, 195–200.CrossRefGoogle Scholar
  10. 10.
    Tse, P. H. S. and Gough, D. A. (1987), Biotechnol. Bioeng. 29, 705–713.CrossRefGoogle Scholar
  11. 11.
    Malikkides, C. O. and Weiland, R. H. (1982), Biotechnol. Bioeng. 24, 2419–2439.CrossRefGoogle Scholar
  12. 12.
    Romero, L. E. and Cantero, D. (1998), in Stability and Stabilization of Biocatalyst, Ballesteros, A., Plou, F. J., Iborra, J. L., and Halling, P. J., eds. Elsevier, New York, pp. 107–112.Google Scholar
  13. 13.
    Romero, L. E., Macías, M., and Cantero, D. (1998), Ingeniería Química 10, 189–193.Google Scholar
  14. 14.
    Blandino, A., Macías, M., and Cantero, D. (2000), Process Biochem. 36, 601–606.CrossRefGoogle Scholar
  15. 15.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  16. 16.
    Boltz, D. F. and Howell, J. A. (1987), Colorimetric Determination of Nonmetals, John Wiley & Sons, New York.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Biological and Enzymatic Reactors Research Group, Department of Chemical Engineering, Food Technology and Environmental Technologies, Faculty of SciencesUniversity of Cádiz (UCA)Puerto Real (Cádiz)Spain

Personalised recommendations