Applied Biochemistry and Biotechnology

, Volume 109, Issue 1–3, pp 63–76 | Cite as

Dynamic simulation of pH in anaerobic processes

  • Elena Campos
  • Xavier FlotatsEmail author


With the objective of contributing to the buildup of mathematical tools for anaerobic process simulation, an algorithm for the dynamic simulation of pH was developed. The dynamic simulation of the gaseous phase variables was also considered. The pH algorithm was validated for a watery system, obtaining good agreement between predicted and experimental data. The applied methodology provides a differential equation that allows the inclusion of pH as a state variable of the system that can be easily included in a general mathematical model of anaerobic digestion using matrix notation. This methodology also allows a noticeable decrease in computing time in simulations. A dynamic anaerobic digestion model of complex substrates taken from the literature was completed with the developed algorithms, and it was used to predict the response of an anaerobic reactor against overloading and against the presence of pH-dependent inhibitors with satisfactory results.

Index Entries

Anaerobic digestion model pH simulation ammonia inhibition physical-chemical processes dynamical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalyuzhnyi, S. and Federovich, V. (1997), Water Sci. Technol. 36(6–7), 201–208.CrossRefGoogle Scholar
  2. 2.
    Batstone, D. J., Keller, J., Angelidaki, R. I., Kalyuzhny, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H., and Vavilin, V.-A. (2002), Scientific and Technical Report No. 13, International Water Association, London.Google Scholar
  3. 3.
    Clark, R. H. and Speece, R. E. (1970), in Advances in Water Pollution Research, Proceedings of the 5th International Conference, vol. II(27), Jenkins, S. H., ed., Pergamon, Oxford, pp. 1–14.Google Scholar
  4. 4.
    Zeeman, G., Wiegant, W. M., Koster-Treffers, M. E., and Lettinga, G. (1985), Agric. Wastes 14, 19–35.CrossRefGoogle Scholar
  5. 5.
    Hashimoto, A. G. (1986), Agric. Wastes 17, 241–261.CrossRefGoogle Scholar
  6. 6.
    Angelidaki, I. and Ahring, B. K. (1993), Appl. Microbiol. Biotechnol. 38, 560–564.CrossRefGoogle Scholar
  7. 7.
    Hansen, K., Angelidaki, I., and Ahring, B. K. (1998), Water Res. 32, 5–12.CrossRefGoogle Scholar
  8. 8.
    Ahring, B. K. and Westermann, P. (1988), Appl. Environ. Microbiol. 54, 2393–2397.Google Scholar
  9. 9.
    Fukuzaki, S., Nishio, N., Shobayashi, M., and Nagai, S. (1990), Appl. Environ. Microbiol. 56, 719–723.Google Scholar
  10. 10.
    Andrews, J. F. and Graef, S. P. (1971), in Anaerobic Biological Treatment Processes, Advances in Chemistry Series 105, Pohland, F. G., ed., American Chemical Society, Washington, DC, pp. 126–162.Google Scholar
  11. 11.
    Costello, D. J., Greenfield, P. F., and Lee, P. L. (1991), Water Res. 25, 847–858.CrossRefGoogle Scholar
  12. 12.
    Siegrist, H., Renggli., D., and Gujer, W. (1993), Water Sci. Technol. 27(2), 25–36.Google Scholar
  13. 13.
    Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1993), Biotechnol. Bioeng. 42, 159–166.CrossRefGoogle Scholar
  14. 14.
    Vavilin, V. A., Vasiliev, V., Rytov, S., and Ponomarev, A. (1995), Water Res. 29, 827–835.CrossRefGoogle Scholar
  15. 15.
    Kiely, G., Tayfur, G., Dolan, C., and Tanji, K. (1997), Water Res. 31, 534–540.CrossRefGoogle Scholar
  16. 16.
    Lide, D. (1993), CRC Handbook of Chemistry and Physics, 73rd ed., CRC Press, Boca Raton, FL.Google Scholar
  17. 17.
    Aguilar Sanjuán, M. (1993), Introduccion a los equilibrios iónicos, Cpda-etseib, Barcelona.Google Scholar
  18. 18.
    Merkel, W. and Krauth, K. (1999), Water Res. 33, 2011–2020.CrossRefGoogle Scholar
  19. 19.
    Costello, D. J., Greenfield, P. F., and Lee, P. L. (1991), Water Res. 25, 859–871.CrossRefGoogle Scholar
  20. 20.
    Van Langerak, E. P. A., Hamelers, H. V. M., and Lettinga, G. (1997), Water Sci. Technol. 36(6–7), 341–348.CrossRefGoogle Scholar
  21. 21.
    Musvoto, E. V., Wentzel, M. C., Loewenthal, R. E., and Ekama, G. A. (2000), Water Res. 34, 1857–1867.CrossRefGoogle Scholar
  22. 22.
    Sewell, G. (1988), The Numerical Solution of Ordinary and Partial Differential Equations, Academic, London.Google Scholar
  23. 23.
    Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1999), Biotechnol. Bioeng. 63, 363–372.CrossRefGoogle Scholar
  24. 24.
    Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1997), Water Sci. Technol. 36(6–7), 263–269.CrossRefGoogle Scholar
  25. 25.
    Hanaki, K., Matsuo, T., and Nagase, M. (1981), Biotechnol. Bioeng. 23, 1591–1610.CrossRefGoogle Scholar
  26. 26.
    Angelidaki, I., and Ahring, B. K. (1992), Appl. Microbiol. Biotechnol. 37, 808–812.CrossRefGoogle Scholar
  27. 27.
    Campos, E. (2001), PhD thesis, University of Lleida, Lleida, Spain.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Department of Environment and Soil ScienceUniversity of LleidaSpain

Personalised recommendations