Applied Biochemistry and Biotechnology

, Volume 109, Issue 1–3, pp 47–62 | Cite as

Parameter identification of thermophilic anaerobic degradation of valerate

  • Xavier Flotats
  • Birgitte K. Ahring
  • Irini Angelidaki
Article

Abstract

The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with differenitial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55°C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state viariables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 9% significance level with positive results except for the saturation constant, for which more eperiments for improving its identifiability should be conducted. In this article, we discussekinetic parameter estimation methods.

Index Entries

Anaerobic mathematical modeling identifiability parameter estimation optimization valerate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vanrolleghem, P. A. and Keesman, K. J. (1996), Water Sci. Technol. 33(2), 91–105.CrossRefGoogle Scholar
  2. 2.
    Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhny, S. V., Ravlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H., and Vavilin, V. A. (2002), Scientific and Technical Report No. 3, IWA, London.Google Scholar
  3. 3.
    Dochain, D., Vanrolleghem, P. A., and Van Daele, M. (1995), Water Res. 29(11), 2571–2578.CrossRefGoogle Scholar
  4. 4.
    Vanrolleghem, P. A., Van Daele, M., and Dochain, D. (1995), Water Res. 29(11), 2561–2570.CrossRefGoogle Scholar
  5. 5.
    Lokshina, L. Y., Vavilin, V. A., Kettunen, R. H., Rintala, J. A., Holliger, C., and Nozhevnikova, A. N. (2001), Water Res. 35(12), 2913–2922.CrossRefGoogle Scholar
  6. 6.
    Bernard, O., Hadj-Sadok, Z., and Dochain, D. (2001), Biotechnol. Bioeng. 75(4), 424–438.CrossRefGoogle Scholar
  7. 7.
    Breure, A. M. and van Andel, J. G. (1984), Appl. Microbiol. Biotechnol. 20, 40–45.CrossRefGoogle Scholar
  8. 8.
    McInterney, M. J. (1988), in Biology of Anaerobic Microorganisms, Zehnder, A. J. B. ed., John Wiley & Sons, New York, pp. 373–415.Google Scholar
  9. 9.
    Schink, B. (1997), Microbiol. Mol. Biol. Rev. 6(2), 262–280.Google Scholar
  10. 10.
    Hill, D. T. and Cobb, S. A. (1993), Trans. ASAE 36, 879–885.Google Scholar
  11. 11.
    Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1993), Biotechnol. Bioeng. 42, 159–166.CrossRefGoogle Scholar
  12. 12.
    Ahring, B. K. and Westermann, P. (1988), Appl. Environ. Microbiol. 54(10), 2393–2397.Google Scholar
  13. 13.
    Pavlostathis, S. G. and Giraldo-Gómez, E. (1991), Water Sci. Technol. 24(8), 35–59.Google Scholar
  14. 14.
    Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1999), Biotechnol. Bioeng. 63 (3), 363–372.CrossRefGoogle Scholar
  15. 15.
    Julien, S., Babary, J. P., and Lessard, P. (1998), Water Sci. Tecno. 37(12), 309–316.CrossRefGoogle Scholar
  16. 16.
    Bourrel, S. V., Babary, J. P., Julien, S., Nihtila, M. T., and Dochain, D. (1998), SAMS 30, 289–309.Google Scholar
  17. 17.
    Wang, B. C. and Luus, R. (1977), Int. J. Num. Methods Eng. 11, 1235–1250.CrossRefGoogle Scholar
  18. 18.
    Lukasse, K. J., Keesman, K. J., and van Straten, G. (1997), Water Res. 31(9), 2278–2286.CrossRefGoogle Scholar
  19. 19.
    Angelidaki, I., Petersen, S. P., and Ahring, B. K. (1990), Appl. Microbiol Biotechnol. 33, 469–472.CrossRefGoogle Scholar
  20. 20.
    Sorensen, A. H., Winther-Nielsen, M., and Ahring, B. K. (1991), Appl. Microbiol. Biotechnol. 34, 823–827.CrossRefGoogle Scholar
  21. 21.
    Luus, R. and Jaakola, T. H. I. (1973), AIChE J. 19, 760–766.CrossRefGoogle Scholar
  22. 22.
    Scales, L. E. (1985), Introduction to Non-linear Optimization, Macmillan, London.Google Scholar
  23. 23.
    Sewell, G. (1988), The Numerical Solution of Ordinary and Partial Differential Equations, Academic, London.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Xavier Flotats
    • 1
  • Birgitte K. Ahring
    • 2
  • Irini Angelidaki
    • 3
  1. 1.Department of Environment and Soil ScienceUniversity of Lleida, Rovira Roure 177Spain
  2. 2.Department of BiotechnologyThe Technical University of DenmarkLyngbyDenmark
  3. 3.Department of Environment and ResourcesThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations