Applied Biochemistry and Biotechnology

, Volume 107, Issue 1–3, pp 615–628 | Cite as

Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates

  • Nils-Olof Nilvebrant
  • Per Persson
  • Anders Reimann
  • Filipe de Sousa
  • Lo Gorton
  • Leif J. Jönsson
Article

Abstract

In addition to fermentable sugars, dilute-acid hydrolysates of lignocellulose contain compounds that inhibit fermenting microorganisms, such as Saccharomyces cerevisiae. Previous results show that phenolic compounds and furan aldehydes, and to some extent aliphatic acids, act as inhibitors during fermentation of dilute-acid hydrolysates of spruce. Treatment of lignocellulose hydrolysates with alkali, usually in the form of overliming to pH 10.0, has been frequently employed as a detoxification method to improve fermentability. A spruce dilute-acid hydrolysate was treated with NaOH in a factorial design experiment, in which the pH was varied between 9.0 and 12.0, the temperature between 5 and 80°C, and the time between 1 and 7 h. Already at pH 9.0, >25% of the glucose was lost when the hydrolysate was treated at 80°C for 1 h. Among the monosaccharides, xylose was degraded faster under alkaline conditions than the hexoses (glucose, mannose, and galactose), which, in turn, were degraded faster than arabinose. The results suggest that alkali treatment of hydrolysates can be performed at temperatures below 30°C at any pH between 9.0 and 12.0 without problems with sugar degradation or formation of inhibiting aliphatic acids. Treatment with Ca(OH)2 instead of NaOH resulted in more substantial degradation of sugars. Under the harsher conditions of the factorial design experiment, the concentrations of furfural and 5-hydroxymethylfurfural decreased while the total phenolic content increased. The latter phenomenon was tentatively attributed to fragmentation of soluble aromatic oligomers in the hydrolysate. Separate phenolic compounds were affected in different ways by the alkaline conditions with some compounds showing an increase in concentration while others decreased. In conclusion, the conditions used for detoxification with alkali should be carefully controlled to optimize the positive effects and minimize the degradation of fermentable sugars.

Index Entries

Bioethanol lignocellulose hydrolysates fermentation inhibitors alkali detoxification sugar degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wheals, A. E., Basso, L. C., Alves, D. M. G., and Amorim, H. V. (1999), Trends Biotechnol. 17, 482–487.CrossRefGoogle Scholar
  2. 2.
    Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.CrossRefGoogle Scholar
  3. 3.
    Clark, T. A. and Mackie, K. L. (1984), J. Chem. Technol. Biotechnol. 34B, 101–110.Google Scholar
  4. 4.
    Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N.-O. (1999), Enzyme Microb. Technol. 24, 151–159.CrossRefGoogle Scholar
  5. 5.
    Larsson, S., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.CrossRefGoogle Scholar
  6. 6.
    Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (2000), Appl. Biochem. Biotechnol. 84–86, 617–632.CrossRefGoogle Scholar
  7. 7.
    Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000), Biotechnol. Bioeng. 69, 526–536.CrossRefGoogle Scholar
  8. 8.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–293.CrossRefGoogle Scholar
  9. 9.
    Nilvebrant, N.-O., Reimann, A., Larsson, S., and Jönsson, L. J. (2001), Appl. Biochem. Biotechnol. 91–93, 35–49.CrossRefGoogle Scholar
  10. 10.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Wooley, R. J. (2000), Enzyme Microb. Technol. 27, 240–247.CrossRefGoogle Scholar
  11. 11.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Biotechnol. Lett. 19, 1125–1127.CrossRefGoogle Scholar
  12. 12.
    Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N.-O., and Jönsson, L. J. (2002), J. Agric. Food Chem. 50(19), 5318–5325.CrossRefGoogle Scholar
  13. 13.
    Pigman, W. and Anet, E. F. L. J. (1972), in The Carbohydrates, vol. 1A, Pigman, W. and Horton, D., eds., Academic Press, New York, NY, pp. 165–194.Google Scholar
  14. 14.
    De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1986), Recl. Trav. Chim. Pays-Bas 105, 176–183.Google Scholar
  15. 15.
    De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1987), Recl. Trav. Chim. Pays-Bas 106, 35–43.Google Scholar
  16. 16.
    De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1987), Starch/Staerke 39, 23–28.CrossRefGoogle Scholar
  17. 17.
    Forsskåhl, I., Popoff, T., and Theander, O. (1976), Carbohydr. Res. 48, 13–21.CrossRefGoogle Scholar
  18. 18.
    Yang, B. Y. and Montgomery, R. (1996), Carbohydr. Res. 280, 27–45.CrossRefGoogle Scholar
  19. 19.
    Yang, B. Y. and Montgomery, R. (1996), Carbohydr. Res. 280, 47–57.CrossRefGoogle Scholar
  20. 20.
    De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1986), Sugar Technol. Rev. 13, 21–52.Google Scholar
  21. 21.
    Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000), Biotechnol. Prog. 16, 637–641.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Nils-Olof Nilvebrant
    • 1
  • Per Persson
    • 2
  • Anders Reimann
    • 1
  • Filipe de Sousa
    • 1
  • Lo Gorton
    • 2
  • Leif J. Jönsson
    • 3
  1. 1.STFI, Swedish Pulp and Paper Research InstituteStockholmSweden
  2. 2.Department of Analytical ChemistryLund UniversityLundSweden
  3. 3.Biochemistry, Division for ChemistryKarlstad UniversityKarlstadSweden

Personalised recommendations