Advertisement

Applied Biochemistry and Biotechnology

, Volume 106, Issue 1–3, pp 457–469 | Cite as

Cellulosic fuel ethanol

Alternative fermentation process designs with wild-type and recombinant zymomonas mobilis
  • Hugh G. LawfordEmail author
  • Joyce D. Rousseau
Article

Abstract

Iogen (Canada) is a major manufacturer of industrial cellulase and hemicellulase enzymes for the textile, pulp and paper, and poultry feed industries. Iogen has recently constructed a 40 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. The integration of enzyme and ethanol plants results in significant reduction in production costs and offers an alternative use for the sugars generated during biomass conversion. Iogen has partnered with the University of Toronto to test the fermentation performance characteristics of metabolically engineered Zymomonas mobilis created at the National Renewable Energy Laboratory. This study focused on strain AX101, a xylose- and arabinose-fermenting stable genomic integrant that lacks the selection marker gene for antibiotic resistance. The “Iogen Process” for biomass depolymerization consists of a dilute-sulpfuric acid-catalyzed steam explosion, followed by enzymatic hydrolysis. This work examined two process design options for fermentation, first, continuous cofermentation of C5 and C6 sugars by Zm AX101, and second, separate continuous fermentations of prehydrolysate by Zm AX101 and cellulose hydrolysate by either wildtype Z. mobilis ZM4 or an industrial yeast commonly used in the production of fuel ethanol from corn. Iogen uses a proprietary process for conditioning the prehydrolysate to reduce the level of inhibitory acetic acid to at least 2.5 g/L. The pH was controlled at 5.5 and 5.0 for Zymomonas and yeast fermentations, respectively. Neither 2.5 g/L of acetic acid nor the presence of pentose sugars (C6:C5 = 2:1) appreciably affected the high-performance glucose fermentation of wild-type Z. mobilis ZM4. By contrast, 2.5 g/L of acetic acid significantly reduced the rate of pentose fermentation by strain AX101. For single-stage continuous fermentation of pure sugar synthetic cellulose hydrolysate (60 g/L of glucose), wild-type Zymomonas exhibited a four-fold higher volumetric productivity compared with industrial yeast. Low levels of acetic acid stimulated yeast ethanol productivity. The glucose-to-ethanol conversion efficiency for Zm and yeast was 96 and 84%, respectively.

Index Entries

Genomic integration recombinant Zymomonas AX101 Zymomonas mobilis arabinose xylose ethanol prehydrolysate biomass hydrolysate acetic acid yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.Google Scholar
  2. 2.
    Foody, B. F. and Tolan, J.S. (2001), in 23rd Symposium on Biotechnology for Fuels and Chemicals, Finkelstein, M. and Davison, B., eds., Breckenridge, Breckenridge, CO, Abstract no. 6-05.Google Scholar
  3. 3.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L. and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.Google Scholar
  4. 4.
    Bringer, S., Sahm, H., and Swyzen, W. (1984), Biotechnol. Bioeng. Symp. 14, 311–319.Google Scholar
  5. 5.
    Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993), Crit. Rev. Biotechnol. 13, 57–98.PubMedGoogle Scholar
  6. 6.
    Lawford, H. G., Rousseau, J. D., and Tolan, J. S. (2001), Appl. Biochem. Biotechnol. 91–93, 133–146.PubMedCrossRefGoogle Scholar
  7. 7.
    Lawford, H. G. and Rousseau, J. D. (2002), Appl. Biochem. Biotechnol. 98–100, 429–448.PubMedCrossRefGoogle Scholar
  8. 8.
    Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 277–294.PubMedCrossRefGoogle Scholar
  9. 9.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.PubMedCrossRefGoogle Scholar
  10. 10.
    Lawford, H. G. and Rousseau, J. D. (2001), Appl. Biochem. Biotechnol. 91–93, 117–131.PubMedCrossRefGoogle Scholar
  11. 11.
    Tolan, J. S. (1999), in The Alcohol Textbook, Jacques, K. A., Lyons, T. P., Kelsall, D. R., eds., Nottingham University Press, Nottingham, UK, pp. 117–128.Google Scholar
  12. 12.
    Timell, T. E. (1964), Adv. Carbohydr. Chem. 9, 247–302.Google Scholar
  13. 13.
    McMillan, J.D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, ACS Symposium Series 566, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, pp. 411–437.Google Scholar
  14. 14.
    Lawford, H. G. and Rousseau, J. D. (1994), Appl. Biochem. Biotechnol. 45/46, 437–448.CrossRefGoogle Scholar
  15. 15.
    Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 687–699.Google Scholar
  16. 16.
    Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 269–286.Google Scholar
  17. 17.
    Zhang, M., Chou, Y-C., Picataggio, S. K., and Finkelstein, M. (1998), US patent no. 5,843,760.Google Scholar
  18. 18.
    Mohagheghi, A., Evans, K., Chou, Y.-C. and Zhang, M. (2002), Appl. Biochem. Biotechnol. 98–100, 885–898.PubMedCrossRefGoogle Scholar
  19. 19.
    Roger, P.L. and Tribe, D. E. (1984), US patent no. 4,443,544.Google Scholar
  20. 20.
    Ingledew, W.M. (1999), in The Alcohol Textbook, ACS Symposium Series 566, Jacques, K. A., Lyons, T. P., Kelsall, D. R., eds., Nottingham University Press, Nottingham, UK, pp. 49–87.Google Scholar
  21. 21.
    Toon, S., Philippidis, G. P., Ho, N. W. Y., Chen, Z. D., Brainard, A., Lumpkin, R. E., and Riley, C. J. (1997), Appl. Biochem. Biotechnol. 63–65, 243–255.Google Scholar
  22. 22.
    Maiorella, B., Blanch, H. W., and Wolke, C. R. (1983), Biotechnol. Bioeng. 25, 103–111.CrossRefGoogle Scholar
  23. 23.
    Vega, J. L., Claussen, E. C., and Gaddy, J. L. (1987), Biotechnol. Bioeng. 29, 429–435.CrossRefGoogle Scholar
  24. 24.
    Lawford, H. G. (1988), in VIII International Symposium on Alcohol Fuels, New Energy and Industrial Technology Development Organization, Tokyo, Japan, pp. 21–27.Google Scholar
  25. 25.
    Beavan, M., Zawadzki, B., Droniuk, R., Fein, J., and Lawford, H. G. (1989), Appl. Biochem. Biotechnol. 20/21, 319–326.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Bio-Engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations