Applied Biochemistry and Biotechnology

, Volume 106, Issue 1–3, pp 383–392 | Cite as

Measurement of rheological properties of corn stover suspensions

  • Natalia V. Pimenova
  • Thomas R. Hanley


Corn stover is currently being evaluated as a feedstock for ethanol production. The corn stover suspensions fed to reactors typically range between 10 and 40% solids. To simulate and design bioreactors for processing highly loaded corn stover suspensions, the rheologic properties of the suspension must be measured. In systems with suspended solids, rheologic measurements are difficult to perform owing to settling in the measurement devices. In this study, viscosities of corn stover suspensions were measured using a helical ribbon impeller viscometer. A calibration procedure is required for the impeller method in order to obtain the shear rate constant, k, which is dependent on the geometry of the measurement system. The corn stover suspensions are described using a power law flow model.

Index Entries

Corn stover rheological properties helical impeller cone-and-plate impeller power law parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McMillan, J. D. (1997), Renewable Energy 10(2/3), 295–302.CrossRefGoogle Scholar
  2. 2.
    Wenzl, H. F. J. (1996), The Chemical Technology of Wood, Academic, New York, NY.Google Scholar
  3. 3.
    Hayn, M., Steiner, W., Klinger, R., Steinmueller, H., Sinner, M., and Esterbauer, H. (1993), in Bioconversion of Forest and Agricultural Plant Residues, Saddler, J. N., ed., CAB, Wallingford, UK, pp. 33–72.Google Scholar
  4. 4.
    Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. (1997), Bioresour. Technol. 59, 129–136.CrossRefGoogle Scholar
  5. 5.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Wooley, R. J. (2000), Enzyme Microb. Technol. 27, 240–247.PubMedCrossRefGoogle Scholar
  6. 6.
    Svihla, C. K., Dronawat, S. N., and Hanley, T. R. (1995), Appl. Biochem. Biotechnol. 51/52, 355–366.Google Scholar
  7. 7.
    Allen, D. G. and Robinson, C. W. (1990), Chem. Eng. Sci. 45(1), 37–48.CrossRefGoogle Scholar
  8. 8.
    Kemblowski, L. and Kristiansen, B. (1986), Biotechnol. Bioeng. 28, 1474–1483.CrossRefGoogle Scholar
  9. 9.
    Metz, B., Kossen, N. W. F., and Van Suijdam, J. C. (1979), Adv. Biochem. Eng. 11, 103–155.Google Scholar
  10. 10.
    Charles, M. (1978), Adv. Biochem. Eng. 8, 1–62.Google Scholar
  11. 11.
    Dronawat, S. N., Rieth, T. C., Svihla, C. K., and Hanley, T. R. (1996) in Proceedings of the 5th World Congress of Chemical Engineering, vol. 1, AIChE, New York, NY, pp. 629–633.Google Scholar
  12. 12.
    Svihla, C. K., Dronawat, S. N., Donnely, J. A., Rieth, T. C., and Hanley, T. R. (1997) Appl. Biochem. Biotechnol. 63/65, 375–385.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of LouisvilleLouisville

Personalised recommendations