Advertisement

Applied Biochemistry and Biotechnology

, Volume 106, Issue 1–3, pp 255–263 | Cite as

d-xylose transport by Candida succiphila and Kluyveromyces marxianus

  • Boris U. Stambuk
  • Mary Ann Franden
  • Arjun Singh
  • Min Zhang
Article

Abstract

The kinetics and regulation of d-xylose uptake were investigated in the efficient pentose fermentor Candida succiphila, and in Kluyveromyces marxianus, which assimilate but do not ferment pentose sugars. Active high-affinity (K m ∼ 3.8 mM; V max ∼ 15 nmol/[mg·min]) and putative facilitated diffusion low-affinity (K m ∼ 140 mM; V max ∼ 130 nmol/[mg·min]) transport activities were found in C. succiphila grown, respectively, on xylose or glucose. K. marxianus showed facilitated diffusion low-affinity (K m ∼ 103 mM; V max ∼ 190 nmol/[mg·min]) transport activity when grown on xylose under microaerobic conditions, and both a low-affinity and an active high-affinity (K m ∼ 0.2 mM; V max ∼ 10 nmol/[mg·min]) transport activity when grown on xylose under fully aerobic conditions.

Index Entries

d-Xylose transport kinetics fermentation Candida succiphila Kluyveromyces marxianus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bothast, R. J., Nichols, N. N., and Dien, B. S. (1999), Biotechnol. Prog. 15, 867–875.PubMedCrossRefGoogle Scholar
  2. 2.
    Aristidou, A. and Penttila, M. (2000), Curr. Opin. Biotechnol. 11, 187–198.PubMedCrossRefGoogle Scholar
  3. 3.
    Zaldivar, J., Nielsen, J., and Olsson, L. (2001), Appl. Microbiol. Biotechnol. 56, 17–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Ho, N. W., Chen, Z., Brainard, A. P., and Sedlak, M. (1999), Adv. Biochem. Eng. Biotechnol. 65, 163–205.PubMedGoogle Scholar
  5. 5.
    Hahn-Hagerdal, B., Wahlbom, C. F., Gardonyi, M., van Zyl, W. H., Otero, R. R. C., and Jonsson, L. J. (2001), Adv. Biochem. Eng. Biotechnol. 73, 53–84.PubMedGoogle Scholar
  6. 6.
    Ye, J., Kruckeberg, A. L., Berden, J. A., and van Dam, K. (1999), J. Bacteriol. 181, 4673–4675.PubMedGoogle Scholar
  7. 7.
    Zastrow, C. R., Hollatz, C., de Araujo, P. S., and Stambuk, B. U. (2001), J. Ind. Microbiol. Biotechnol. 27, 34–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Goffini, P., Ferrero, I., and Donnini, C. (2002), J. Bacteriol. 184, 427–432.CrossRefGoogle Scholar
  9. 9.
    Eliasson, A., Christensson, C., Wahlbom, C. F., and Hahn-Hagerdal, B. (2000), Appl. Environ. Microbiol. 66, 3381–3386.PubMedCrossRefGoogle Scholar
  10. 10.
    Busturia, A. and Lagunas, R. (1986), J. Gen. Microbiol. 132, 379–385.PubMedGoogle Scholar
  11. 11.
    Kotter, P. and Ciriacy, M. (1993), Appl. Microbiol. Biotechnol. 38, 776–783.CrossRefGoogle Scholar
  12. 12.
    Ozcan, S. and Johnston, M. (1999), Microbiol. Mol. Biol. Rev. 63, 554–569.PubMedGoogle Scholar
  13. 13.
    Meinander, N. Q. and Hahn-Hagerdal, B. (1997), Appl. Environ. Microbiol. 63, 1959–1964.PubMedGoogle Scholar
  14. 14.
    Meinander, N. Q., Boels, I., and Hahn-Hagerdal, B. (1997), Bioresour. Technol. 68, 79–87.CrossRefGoogle Scholar
  15. 15.
    Rizzi, M., Erlemann, P., Bui-Thanh, N. A., and Delleweg, H. (1988), Appl. Microbiol. Biotechnol. 29, 148–154.Google Scholar
  16. 16.
    Petrash, J. M., Murthy, B. S. N., Young, M., Morris, K., Rikimaru, L., Griest, T. A. and Harter, T. (2001), Chem. Biol. Interact. 130–132, 673–683.PubMedCrossRefGoogle Scholar
  17. 17.
    Spencer-Martins, I. (1994), Bioresour. Technol. 50, 51–57.CrossRefGoogle Scholar
  18. 18.
    Dien, B. S., Kurtzman, C. P., Saha, B. C., and Bothast, R. J. (1996), Appl. Biochem. Biotechnol. 57–58, 233–242.PubMedGoogle Scholar
  19. 19.
    Margaritis, A. and Bajpai, P. (1982), Appl. Environ. Microbiol. 44, 1039–1041.PubMedGoogle Scholar
  20. 20.
    Deanda, K., Zhang, M., Eddy, C., and Picataggio, S. (1996), Appl. Environ. Microbiol. 62, 4465–4470.PubMedGoogle Scholar
  21. 21.
    Lucas, C. and van Uden, N. (1986), Appl. Microbiol. Biotechnol. 23, 491–495.CrossRefGoogle Scholar
  22. 22.
    Coons, D. M., Boulton, R. B., and Bisson, L. F. (1995), J. Bacteriol. 177, 3251–3258.PubMedGoogle Scholar
  23. 23.
    Stambuk, B. U. and de Araujo, P. S. (2001), FEMS Yeast Res. 1, 73–78.PubMedGoogle Scholar
  24. 24.
    Ligthelm, M. E., Prior, B. A., and du Preez, J. C. (1988), Appl. Microbiol. Biotechnol. 28, 63–68.Google Scholar
  25. 25.
    Boynton, B. L. and McMillan, J. D. (1994), Appl. Biochem. Biotechnol. 45–46, 509–514.Google Scholar
  26. 26.
    Passoth, V., Zimmermann, M., and Klinner, U. (1996), Appl. Biochem. Biotechnol. 57–58, 201–212.PubMedCrossRefGoogle Scholar
  27. 27.
    Bruinenberg, P. M., de Bot, P. H. M., van Dijken, J. P., and Scheffers, W. A. (1983), Appl. Microbiol. Biotechnol. 19, 256–260.Google Scholar
  28. 28.
    Ligthelm, M. E., Prior, B. A., du Preez, J. C., and Brandt, V. (1988), Appl. Microbiol. Biotechnol. 28, 293–296.Google Scholar
  29. 29.
    Sreenath, H. K. and Jeffries, T. W. (1997), Appl. Biochem. Biotechnol. 63–65, 109–116.CrossRefGoogle Scholar
  30. 30.
    Kilian, S. G. and van Uden, N. (1988), Appl. Microbiol. Biotechnol. 27, 545–549.Google Scholar
  31. 31.
    Does, A. L. and Bisson, L. F. (1989), Appl. Environ. Microbiol. 55, 159–164.PubMedGoogle Scholar
  32. 32.
    Kilian S. G., Prior, B. A., and du Preez, J. C. (1993), World J. Microbiol. Biotechnol. 9, 357–360.CrossRefGoogle Scholar
  33. 33.
    Nobre, A., Lucas, C., and Leao, C. (1999), Appl. Environ. Microbiol. 65, 3594–3598.PubMedGoogle Scholar
  34. 34.
    Sa-Correia, I. and van Uden, N. (1983), Biotechnol. Lett. 5, 413–418.CrossRefGoogle Scholar
  35. 35.
    Weierstall, T., Hollenberg, C., and Boles, E. (1999), Mol. Microbiol. 31, 871–883.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Boris U. Stambuk
    • 1
    • 2
  • Mary Ann Franden
    • 1
  • Arjun Singh
    • 1
  • Min Zhang
    • 1
  1. 1.National Bioenergy CenterNational Renewable Energy LaboratoryGolden
  2. 2.Departamento de BioquímicaUniversidade Federal de Santa CatarinaFlorianópolis, SCBrazil

Personalised recommendations