Applied Biochemistry and Biotechnology

, Volume 105, Issue 1–3, pp 17–25

Xylem-specific and tension stress-responsive expression of cellulose synthase genes from aspen trees



Genetic improvement of cellulose biosynthesis in woody trees is one of the major goals of tree biotechnology research. Yet, progress in this field has been slow owing to (1) unavailability of key genes from tree genomes, (2) the inability to isolate active and intact cellulose synthase complexes and, (3) the limited understanding of the mechanistic processes involved in the wood cellulose development. Here I report on the recent advances in molecular genetics of cellulose synthases (CesA) from aspen trees. Two different types of cellulose synthases appear to be involved in cellulose deposition in primary and secondary walls in aspen xylem. The three distinct secondary CesAs from aspen—PtrCesA1, PtrCesA2, and PtrCesA3—appear to be aspen homologs of Arabidopsis secondary CesAs AtCesA8, AtCesA7, and AtCesA4, respectively, based on their high identity/similarity (>80%). These aspen CesA proteins share the transmembrane domain (TMD) structure that is typical of all known “true” CesA proteins: two TMDs toward the N-terminal and six TMDs toward the C-terminal. The putative catalytic domain is present between TMDs 2 and 3. All signature motifs of processive glycosyltransferases are also present in this catalytic domain. In a phylogenetic tree based on various predicted CesA proteins from Arabidopsis and aspen, aspen CesAs fall into families similar to those seen with Arabidopsis CesAs, suggesting their functional similarity. The coordinate expression of three aspen secondary CesAs in xylem and phloem fibers, along with their simultaneous tension stress-responsive upregulation, suggests that these three CesAs may play a pivotal role in biosynthesis of better-quality cellulose in secondary cell walls of plants. These results are likely to have a direct impact on genetic manipulation of trees in the future.

Index Entries

Aspen cellulose biosynthesis cellulose synthase trees wood development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delmer, D. P. (1999), Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 245–276.CrossRefGoogle Scholar
  2. 2.
    Brown, R. M. Jr., Saxena, I.M. and Kudlicka, K. (1996), Trends Plant Sci. 1, 149–156.CrossRefGoogle Scholar
  3. 3.
    Delmer, D. P. and Amor, Y. (1995), Plant Cell 7, 987–1000CrossRefGoogle Scholar
  4. 4.
    Haigler, C. (1985), in Cellulose Chemistry and Applications, Nevell, T. P. and Zoronian, S. H., eds., Ellis Horwood, Chichester, UK, pp. 30–83.Google Scholar
  5. 5.
    Timell, T. E. (1986), Compression Wood in Gymnosperms. Springer-Verlag, Berlin, Germany.Google Scholar
  6. 6.
    Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder C.R., and Brown, R.M. (1999), Plant Cell 11, 2075–2085.CrossRefGoogle Scholar
  7. 7.
    Haigler, C. and Blanton, R. L. (1996), Proc. Natl. Acad. Sci. USA 93, 12,082–12,085.CrossRefGoogle Scholar
  8. 8.
    Saxena, I. M., Lin, F. C., Brown, R. M. (1990), Plant Mol. Biol. 15, 673–683.CrossRefGoogle Scholar
  9. 9.
    Saxena, I. M., Brown, R. M., Fevre, M., Geremia, R. A., and Henrissat, B. (1995), J. Bacteriol. 177, 1419–1424.Google Scholar
  10. 10.
    Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P., and Stalker, D. M. (1996) Proc. Natl. Acad. Sci. USA 93, 12,637–12,642.CrossRefGoogle Scholar
  11. 11.
    Richmond, T. A. (2000), Genome Biol. 1(4), Rev. 3001.1–3001.6.Google Scholar
  12. 12.
    Taylor, N. G., Scheible W.-R., Cutler, S., Somerville, C. R., and Turner, S. R. (1999), Plant Cell 11, 769–779.CrossRefGoogle Scholar
  13. 13.
    Holland, N., Holland, D., Helentjaris, T., Dhugga, K., Xoconostle-Cazares, B., and Delmer, D. P. (2000), Plant Physiol. 123, 1313–1323.CrossRefGoogle Scholar
  14. 14.
    Taylor, N. G., Laurie, S., and Turner, S. R. (2000), Plant Cell 12, 2529–2540.CrossRefGoogle Scholar
  15. 15.
    Joshi, C. P. (2003), in Molecular Genetics and Biotechnology of Forest Trees, Kumar, S. and Fladung, M., eds., Howarth, Howarth, NY.Google Scholar
  16. 16.
    Dadswell, H. E. and Wardrop, A. B. (1955), Holzforschung 9, 97–103.CrossRefGoogle Scholar
  17. 17.
    Norberg, P. H. and Meier, H. (1966), Holzforschung 20, 174–178.CrossRefGoogle Scholar
  18. 18.
    Timell, T. E. (1969), Svensk Papperstidning 72, 173–181.Google Scholar
  19. 19.
    Wu, L., Joshi, C. P., and Chiang, V. L. (2000), Plant J 22, 495–502.CrossRefGoogle Scholar
  20. 20.
    Kawagoe, Y. and Delmer, D. P. (1997) in Genetic Engineering, vol. 19, Setlow, J. K., ed., Plenum, New York, NY, pp 63–87.Google Scholar
  21. 21.
    Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., and Hofte, H. (2000), Plant Cell 12, 2409–2424.CrossRefGoogle Scholar
  22. 22.
    Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., et al. (1998), Science 279, 717–720.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Plant Biotechnology Research Center, School of Forestry and Wood ProductsMichigan Technological UniversityHoughton

Personalised recommendations