Applied Biochemistry and Biotechnology

, Volume 105, Issue 1–3, pp 141–153 | Cite as

Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus

  • Jose Miguel Oliva
  • Felicia Sáez
  • Ignacio Ballesteros
  • Alberto González
  • Maria José Negro
  • Paloma Manzanares
  • Mercedes Ballesteros
Article

Abstract

The filtrate from steam-pretreated poplar was analyzed to identify degradation compounds. The effect of selected compounds on growth and ethanolic fermentation of the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875 was tested. Several fermentations on glucose medium, containing individual inhibitory compounds found in the hydrolysate, were carried out. The degree of inhibition on yeast strain growth and ethanolic fermentation was determined. At concentrations found in the prehy-drolysate, none of the individual compounds significantly affected the fermentation. For all tested compounds, growth was inhibited to a lesser extent than ethanol production. Lower concentrations of catechol (0.96 g/L) and 4-hydroxybenzaldehyde (1.02 g/L) were required to produce the 50% reduction in cell mass in comparison to other tested compounds.

Index Entries

Ethanol production Kluyveromyces marxianus poplar biomass inhibitors fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynd, L.R., Wyman, C.E. and Gerngross, T.U. (1999), Biotech. Prog. 15, 777–793.CrossRefGoogle Scholar
  2. 2.
    Sun, Y. and Chen, J. (2002), Bioresour. Technol. 83, 1–11.CrossRefGoogle Scholar
  3. 3.
    Ballesteros, I., Oliva, J.M., Ballesteros, M. and Carrasco, J. (1993), Appl. Biochem. Biotechnol. 39/40, 201–211.CrossRefGoogle Scholar
  4. 4.
    Mason, W.H. (1929), U.S. patent no. 1,655,618.Google Scholar
  5. 5.
    Higuchi, T. (1988), in Biomass Handbook, Hall, C.W. and Kitani, O., eds., Gordon & Breach, New York, NY pp. 470–474.Google Scholar
  6. 6.
    Luo, C., Brink, D. L., and Blanch, H. W. (2002), Biomass Bioenergy, 22, 125–138.CrossRefGoogle Scholar
  7. 7.
    Ando, S., Arai, I, Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.CrossRefGoogle Scholar
  8. 8.
    Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 7, 841–846.CrossRefGoogle Scholar
  9. 9.
    Jönsson, L. J., Palmqvist, E., Nilvebrant, N. O., and Hahn-Hägerdal, B. (1998), Appl. Microbiol. Biotechnol. 49, 691–697.CrossRefGoogle Scholar
  10. 10.
    Carrasco, J.E., Martinez, J. M., Negro, M. J., Manero, J., Mazón, P., Sáez, F., and Martín, C. (1989), in 5th EC Conference on Biomass for Energy and Industry, vol. 2, Grassi, G., Gosse, G., and Dos Santos, G., eds., Elsevier, Essex, England, UK, pp. 38–44.Google Scholar
  11. 11.
    Zaldivar, J., Martinez, A., and Ingram, L. O. (1999), Biotech. Bioeng. 65, 24–33.CrossRefGoogle Scholar
  12. 12.
    Zaldivar, J., and Ingram, L., O. (1999), Biotech. Bioeng. 66, 203–210.CrossRefGoogle Scholar
  13. 13.
    Zaldivar, J., Martinez, A., and Ingram, L. O. (1999), Biotec. Bioeng. 68, 524–530.CrossRefGoogle Scholar
  14. 14.
    Klinke, H. B., Thomsen, A. B., and Ahring, B. K. (2001), Appl. Microbiol. Technol. 57, 631–638.CrossRefGoogle Scholar
  15. 15.
    Nishikawa, N. K., Sutcliffe, R., and Saddler, J. N. (1988), Appl. Microbiol. Biotechnol. 27, 549–552.Google Scholar
  16. 16.
    Weigert, B., Klein, K., Rizzi, M., Lauterbach, C., and Dellweg, H. (1988), Biotechnol. Lett. 10, 895–900.CrossRefGoogle Scholar
  17. 17.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1996), Enzyme Microbiol. Technol. 19, 220–225.CrossRefGoogle Scholar
  18. 18.
    De Wulf, O., Thornat, P., Gaignage, P., Marlier, M., Paris, A., and Paquot, M. (1986), Biotechnol. Bioeng. Symp. 17, 606–616.Google Scholar
  19. 19.
    Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., and Jönsson, L. J. (2000), Appl. Biochem. Biotechnol. 84–86, 617–632.CrossRefGoogle Scholar
  20. 20.
    Palmqvist, E., Grage, H., Meinander, N. Q., and Hahn-Hagerdal, B. (1999), Biotech. Bioeng. 63, 46–55.CrossRefGoogle Scholar
  21. 21.
    Villa, G. P. (1992), Acta Biotechnol. 12, 509–512.CrossRefGoogle Scholar
  22. 22.
    Taherzadeh, M., Gustafsson, L., Niklasson, C., and Liden, G., (2000), J. Biosci. Bioeng. 87, 169–174.CrossRefGoogle Scholar
  23. 23.
    Diaz de Villegas, M.E., Villa, P., Guerra, M., Rodriguez, E., Redondo, D., and Martinez, A. (1992), Acta Biotechnol. 12, 351–354.CrossRefGoogle Scholar
  24. 24.
    Palmqvist, E. (1998), PhD Thesis, Lund University, Sweden.Google Scholar
  25. 25.
    Morimoto, S., Hirashima, T., and Matutani, N. (1969), J. Ferment. Technol. 47, 486–490.Google Scholar
  26. 26.
    Heipieper, H. J., Weber, F. J., Sikkema, J., Kewelo, H., and de Bont, J. A. M. (1994), Trends Biotechnol. 12, 409–415.CrossRefGoogle Scholar
  27. 27.
    Taherzadeh, M. J., Niclasson, C., and Liden, G. (1997), Chem. Eng. Sci. 52, 2653–2659.CrossRefGoogle Scholar
  28. 28.
    Russel, J. B. (1992), J. Appl. Bacteriol. 73, 363–370.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Jose Miguel Oliva
    • 1
  • Felicia Sáez
    • 1
  • Ignacio Ballesteros
    • 1
  • Alberto González
    • 1
  • Maria José Negro
    • 1
  • Paloma Manzanares
    • 1
  • Mercedes Ballesteros
    • 1
  1. 1.CIEMAT-Departmento de Energías RenovablesMadridSpain

Personalised recommendations