HMD Praxis der Wirtschaftsinformatik

, Volume 55, Issue 2, pp 366–382 | Cite as

Maschinelles Lernen

Grundlagen und betriebswirtschaftliche Anwendungspotenziale am Beispiel von Kundenbindungsprozessen
Schwerpunkt
  • 359 Downloads

Zusammenfassung

Die zunehmende Digitalisierung sowie die allgegenwärtige Verfügbarkeit von Daten verändern das Wirtschaftsleben, den Alltag des Einzelnen und die Gesellschaft als Ganzes. Vor diesem Hintergrund wird der Einsatz von maschinellen Lernverfahren in vielen Bereichen von Wirtschaft und Gesellschaft zum Teil kontrovers diskutiert. Mit Hilfe des Einsatzes solcher Algorithmen lassen sich beispielsweise Prognosen verbessern sowie Entscheidungen bzw. Entscheidungsprozesse automatisieren. In diesem Artikel geben wir zum einen einen Überblick über die Grundprinzipien maschinellen Lernens. Zum anderen diskutieren wir Anwendungsmöglichkeiten sowie Wirtschaftlichkeitspotenziale am Beispiel von Kundenbindungsprozessen.

Schlüsselwörter

Automatisierung von Unternehmenssystemen Kundenbindungsmanagement Maschinelles Lernen 

Machine Learning

Introduction and Use Cases in Customer Retention Management

Abstract

The increasing digitalization, as well as the ubiquitous availability of data, are currently transforming the economy, the lives of consumers, and society in general. In this context, the use of machine learning is often controversially debated by businesses and the public. For example, these algorithms can help improve making predictions and help automate decisions and decision making processes. In this paper, we first provide an overview of the basic concepts of machine learning and secondly, we will examine selected use cases and efficiency potentials within the customer retention processes.

Keywords

Automation of business systems Customer service Customer retention management Machine learning 

Literatur

  1. Amazon Developer (2017) Alexa. https://developer.amazon.com/public/solutions/alexa. Zugegriffen: 29. Okt. 2017Google Scholar
  2. Apple (2017) Siri. http://www.apple.com/ios/siri. Zugegriffen: 29. Okt. 2017Google Scholar
  3. Batista G, Monard MC (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5–6):519–533CrossRefGoogle Scholar
  4. Bitkom (2017) Künstliche Intelligenz verstehen als Automation des Entscheidens. https://www.bitkom.org/noindex/Publikationen/2017/Leitfaden/Bitkom-Leitfaden-KI-verstehen-als-Automation-des-Entscheidens-2-Mai-2017.pdf. Zugegriffen: 17. Sept. 2017Google Scholar
  5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefMATHGoogle Scholar
  6. Bruhn M, Hadwich K (2012) Customer Experience – Eine Einführung in die theoretischen und praktischen Problemstellungen. In: Hadwich K (Hrsg) Customer Experience. Gabler, Wiesbaden, S 3–36CrossRefGoogle Scholar
  7. Brynjolfsson E, McAfee A (2017) The business of artificial intelligence. Harvard Business Review. https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence. Zugegriffen: 29. Sept. 2017Google Scholar
  8. Buckinx W, Van den Poel D (2005) Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. Eur J Oper Res 164(1):252–268CrossRefMATHGoogle Scholar
  9. Burez J, Van den Poel D (2007) CRM at a pay-TV company: using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Syst Appl 32(2):277–288CrossRefGoogle Scholar
  10. Chesbrough H (2007) Business model innovation: it’s not just about technology anymore. Strategy Leadersh 35(6):12–17CrossRefGoogle Scholar
  11. Christensen C (1997) The innovator’s dilemma. Harvard Business School Press, CambridgeGoogle Scholar
  12. Committee on Technology National Science and Technology Council (2016) Preparing for the future of artificial intelligence. Createspace independent publishing platform. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. Zugegriffen: 15. Okt. 2017Google Scholar
  13. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATHGoogle Scholar
  14. Coussement K, Van den Poel D (2008) Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Syst Appl 34(1):313–327CrossRefGoogle Scholar
  15. Coussement K, Van den Poel D (2009) Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Syst Appl 36(3):6127–6134CrossRefGoogle Scholar
  16. Dahlmeier D (2017) Machine learning: making customer service operations smarter and more strategic. https://news.sap.com/machine-learning-smart-customer-service. Zugegriffen: 6. Nov. 2017Google Scholar
  17. Damm W, Kalmar R (2017) Autonome Systeme. Inform Spektrum 40(5):400–408CrossRefGoogle Scholar
  18. Davenport T, Kirby J (2016) Just how smart are smart machines? MIT Sloan Manage Rev 57(3):20–25Google Scholar
  19. Egle U, Keimer I, Hafner N (2014) KPIs zur Steuerung von Customer Contact Centern. In: Möller K, Schultze W (Hrsg) Produktivität von Dienstleistungen. Springer, Wiesbaden, S 505–543Google Scholar
  20. Erichsen J (2007) Benchmarking – von den Besten lernen. Wiss Heute 60(2):21–31Google Scholar
  21. Europäisches Parlament (2017) Bericht mit Empfehlungen an die Kommission zu zivilrechtlichen Regelungen im Bereich Robotik (2015/2103(INL)). http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A8-2017-0005&language=DE. Zugegriffen: 26. Okt. 2017Google Scholar
  22. Fachforum Autonome Systeme im Hightech-Forum (2017) Autonome Systeme – Chancen und Risiken für Wirtschaft, Wissenschaft und Gesellschaft. Kurzversion, Abschlussbericht. Fachforum Autonome Systeme im Hightech-Forum, BerlinGoogle Scholar
  23. Farquad MAH, Ravi V, Raju SB (2014) Churn prediction using comprehensible support vector machine: An analytical CRM application. Appl Soft Comput 19:31–40CrossRefGoogle Scholar
  24. Google (2017) Google now. https://www.google.com/landing/now. Zugegriffen: 29. Okt. 2017Google Scholar
  25. Grace K, Salvatier J, Dafoe A, Zhang B, Evans O (2017) When will aI exceed human performance? Evidence from aI experts. arXiv:1705.08807, S 1–21Google Scholar
  26. Guzella TS, Caminhas WM (2009) A review of machine learning approaches to Spam filtering. Expert Syst Appl 36(7):10206–10222CrossRefGoogle Scholar
  27. Huber AS (2016) Das Digital Enterprise nimmt Gestalt an. In: Sendler U (Hrsg) Industrie 4.0 grenzenlos. Springer, Berlin Heidelberg, S 229–243CrossRefGoogle Scholar
  28. Hung S, Yen DC, Wang H (2006) Applying data mining to telecom churn management. Expert Syst Appl 31(3):515–524CrossRefGoogle Scholar
  29. Hurwitz J, Kaufman M, Bowles A (2015) Cognitive computing and big data analytics. Wiley, HobokenGoogle Scholar
  30. IBM (2017) IBM Watson. https://www.ibm.com/watson. Zugegriffen: 28. Okt. 2017Google Scholar
  31. Jahromi AT, Stakhovych S, Ewing M (2014) Managing B2B customer churn, retention and profitability. Ind Mark Manag 43(7):1258–1268CrossRefGoogle Scholar
  32. Kelly K (2014) The three breakthroughs that have finally unleashed aI on the world. http://www.wired.com/2014/10/future-of-artificial-intelligence. Zugegriffen: 14. Okt. 2017Google Scholar
  33. Kelly JE, Hamm S (2013) Smart machines—IBM’s watson and the era of cognitive computing. Columbia University Press, New YorkCrossRefGoogle Scholar
  34. Kirui C, Hong LL, Cheruiyot W, Kirui H (2013) Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. Int J Comput Sci Issues 10(2):165–172Google Scholar
  35. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th international joint conference of Artificial Intelligence. Bd. 2, S 1137–1143Google Scholar
  36. Kruppa J, Schwarz A, Arminger G, Ziegler A (2013) Consumer credit risk: Individual probability estimates using machine learning. Expert Syst Appl 40(13):5125–5131CrossRefGoogle Scholar
  37. Litjens G, Kooi T, Bejnordi EB, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefGoogle Scholar
  38. Mainzer K (2016) Künstliche Intelligenz – Wann übernehmen die Maschinen? Springer, MünchenCrossRefGoogle Scholar
  39. Marsland S (2015) Machine learning: an algorithmic perspective. Taylor & Francis, FloridaGoogle Scholar
  40. McCarthy J, Minsky ML, Rochester N, Shannon CE (1955) A proposal for the dartmouth summer research project on artificial intelligence. http://jmc.stanford.edu/articles/dartmouth.html. Zugegriffen: 30. Sept. 2017Google Scholar
  41. Mitchell TM (1997) Machine learning. McGraw-Hill, New YorkMATHGoogle Scholar
  42. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, CambridgeMATHGoogle Scholar
  43. Murthy SK (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min Knowl Discov 2(4):345–389CrossRefGoogle Scholar
  44. Ngai EWT, Xiu L, Chau DCK (2009) Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst Appl 36(2):2592–2602CrossRefGoogle Scholar
  45. Niefind F, Wiegran A (2010) Was sind Beschwerden? In: Ratajczak O (Hrsg) Erfolgreiches Beschwerdemanagement. Gabler, Wiesbaden, S 19–32CrossRefGoogle Scholar
  46. Nilsson NJ (2014) Principles of artificial intelligence. Morgan Kaufmann, BurlingtonMATHGoogle Scholar
  47. Osterwalder A, Pigneur Y (2010) Business model generation: a handbook for visionaries, game changers, and challengers. Wiley, HobokenGoogle Scholar
  48. Patel J, Shah S, Thakkar P, Kotecha K (2015) Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Syst Appl 42(1):259–268CrossRefGoogle Scholar
  49. Pennachin C, Goertzel B (2007) Artificial general intelligence. Springer, Berlin HeidelbergMATHGoogle Scholar
  50. Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106Google Scholar
  51. Reeves M, Ueda D (2016) Designing the machines that will design strategy. https://hbr.org/2016/04/welcoming-the-chief-strategy-robot. Zugegriffen: 30. Sept. 2017Google Scholar
  52. Reinartz W, Kumar V (2003) The impact of customer relationship characteristics on profitable lifetime duration. J Mark 67(1):77–99CrossRefGoogle Scholar
  53. Reinartz W, Krafft M, Hoyer WD (2004) The customer relationship management process: its measurement and impact on performance. J Mark Res 41(3):293–305CrossRefGoogle Scholar
  54. Russell SJ, Norvig P (2010) Artificial intelligence—a modern approach. Pearson, New JerseyMATHGoogle Scholar
  55. SAE International (2016) SAE J3016: taxonomy and definitions for terms related to on-road motor vehicle automated driving systemsGoogle Scholar
  56. Salesforce (2017) Salesforce einstein is artificial intelligence in business technology—salesforce EMEA. https://www.salesforce.com/eu/products/einstein/overview. Zugegriffen: 27. Okt. 2017Google Scholar
  57. SAP (2017a) Build your intelligent enterprise with machine learning, a case study with BASF. http://events.sap.com/sapandasug/en/session/32268. Zugegriffen: 30. Okt. 2017Google Scholar
  58. SAP (2017b) Machine learning applications and platform. https://www.sap.com/products/leonardo/machine-learning.html. Zugegriffen: 24. Okt. 2017Google Scholar
  59. SAP (2017c) SAP API business hub: SAP Leonardo machine learning—business services. https://api.sap.com/shell/discover/contentpackage/SAPLeonardoMLBusinessServices. Zugegriffen: 10. Nov. 2017Google Scholar
  60. SAP (2017d) SAP service ticket intelligence. https://help.sap.com/viewer/934ccff77ddb4fa2bf268a0085984db0/1708/en-US. Zugegriffen: 6. Nov. 2017Google Scholar
  61. Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. MIT Press, CambridgeMATHGoogle Scholar
  62. Schroeck M, Shockley R, Smart J, Romero-Morales D, Tufano P (2012) Analytics: the real-world use of big data. IBM Global Business Services, S 1–20Google Scholar
  63. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Demis Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489CrossRefGoogle Scholar
  64. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550:354–359CrossRefGoogle Scholar
  65. Stanford University (2017) One Hundred Year Study on Artificial Intelligence (AI100). https://ai100.stanford.edu. Zugegriffen: 17. Nov. 2017Google Scholar
  66. Susto GA, Schirru A, Pampuri S, McLoone S, Beghi A (2015) Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans Ind Inform 11(3):812–819CrossRefGoogle Scholar
  67. Tamaddoni A, Stakhovych S, Ewing M (2016) Comparing churn prediction techniques and assessing their performance a contingent perspective. J Serv Res 19(2):123–141CrossRefGoogle Scholar
  68. Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9CrossRefGoogle Scholar
  69. Vallis H (2017) The art and science of reducing involuntary subscriber churn. Forrester consulting thought leadership paper [1–13MQMED], S 1–11Google Scholar
  70. Verbeke W, Martens D, Baesens B (2014) Social network analysis for customer churn prediction. Appl Soft Comput 14:431–446CrossRefGoogle Scholar
  71. Wahlster W (2017) Künstliche Intelligenz als Grundlage autonomer Systeme. Inform Spektrum 40(5):409–418CrossRefGoogle Scholar
  72. Wang YF, Chiang DA, Hsu MH, Lin CJ, Lin IL (2009) A recommender system to avoid customer churn: a case study. Expert Syst Appl 36(4):8071–8075CrossRefGoogle Scholar
  73. Watson HJ (2017) Preparing for the cognitive generation of decision support. MIS Q Exec 16(13):153–169Google Scholar
  74. Witten IH, Frank E, Hall MA, Pal CJ (2017) Data mining: practical machine learning tools and techniques. Elsevier, CambridgeGoogle Scholar
  75. World Economic Forum (2016) Digital transformation of industries: digital enterprise. http://reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/files/pages/files/digital-enterprise-narrative-final-january-2016.pdf. Zugegriffen: 11. Okt. 2017Google Scholar
  76. Yin S, Zhu X, Jing C (2014) Fault detection based on a robust one class support vector machine. Neurocomputing 145:263–268CrossRefGoogle Scholar
  77. Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224MathSciNetMATHGoogle Scholar
  78. Zorn S, Jarvis W, Bellman S (2010) Attitudinal perspectives for predicting churn. J Res Interact Mark 4(2):157–169CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtDeutschland

Personalised recommendations