HMD Praxis der Wirtschaftsinformatik

, Volume 53, Issue 4, pp 499–513

Implementierung von kryptographischen Sicherheitsverfahren für Apache Cassandra und Apache HBase

Article
  • 85 Downloads

Zusammenfassung

Spaltenfamiliendatenbanken (engl.: „column family databases“ oder „wide column stores“) sind wegen ihres flexiblen Datenmodells beliebt, das eine weitgehend schemalose Datenverwaltung ermöglicht. Diese Datenbanken (insbesondere HBase und Cassandra als quelloffene Produkte) werden auch von einigen großen Cloud-Dienstanbietern als Database-as-a-Service bereitgestellt. Eine Verschlüsselung der Transportschicht (also eine Sicherung der Verbindung zwischen Kundenrechner und der Cloud-Datenbank) ist in der Regel vorgesehen. Jedoch wird eine darüberhinausgehende Verschlüsselung der Daten innerhalb der Datenbank entweder gar nicht oder zu spät (d. h. erst auf Datenbankseite) unterstützt. Die Daten sind daher im Klartext zugreifbar für den Dienstanbieter. Im Falle eines Einbruchs in das Datenbanksystem kann darüber hinaus auch ein externer Angreifer vollen Zugriff auf die Daten erhalten.

Verschlüsselung ist daher notwendig, um Daten vor unbefugtem Zugriff zu schützen. Insbesondere sollte die gesamte Schlüsselverwaltung sowie die Ver- und Entschlüsselungsoperationen auf Kundenseite erfolgen, damit die Vertraulichkeit der Daten gewahrt bleibt. Traditionelle starke Verschlüsselungsverfahren führen jedoch dazu, dass die Daten nicht mehr effizient verwaltet werden können: eine Suche nach übereinstimmenden Werten, eine Sortierung oder eine Aggregation (zum Beispiel Summierung) der Daten ist nicht möglich. Zur Lösung dieser Probleme wurden in der Theorie zahlreiche Verschlüsselungsverfahren vorgeschlagen, die gewisse Eigenschaften des Klartextes erhalten (sogenannte durchsuchbare und ordnungserhaltende Verschlüsselung).

In diesem Artikel behandeln wir zum einen die derzeit vorhandenen Angebote, HBase und Cassandra als Database-as-a-Service zu nutzen und zum Anderen stellen wir unsere Implementierungen von Verschlüsselungsverfahren vor, die es ermöglichen, Cloud-Datenbanken (und zwar speziell HBase und Cassandra) mit verschlüsselten Daten zu nutzen.

Schlüsselwörter

Spaltenfamiliendatenbanken Cloud-Datenbanken HBase Cassandra Kryptographie 

Implementation of property-preserving encryption for Apache Cassandra and HBase

Abstract

Column family databases (sometimes also called wide column stores) are popular due to their flexible data model, which allows schemaless data storage. These databases (in particular the open source platforms Apache Cassandra and Apache HBase) are offered as database-as-a-service by several cloud storage providers. While encryption of the transport layer (and thus, a secure connection between a customer’s computer and the cloud database) is usually provided, there is no further encryption within in database. The cloud storage provider can access the data in plaintext format. In case external attackers break into the database, they can get access as well.

Thus encryption is necessary to protect sensitive data from illegitimate access. In particular the key management as well as encryption and decryption should be done on customer side in order to preserve data confidentiality. However traditional encryption methods like AES do not preserve the plaintexts characteristics, which make data processing very inefficient. Certain operations, for example sorting, searching and aggregations, are no longer possible at all after encryption. However, various theoretical encryption methods were proposed recently, that preserve the plaintext properties the databases are relying on, e.g. order-preserving encryption and searchable encryption.

This article describes the currently available options for using Apache Cassandra and HBase in the database-as-a-service scenario and introduces our implementations of property-preserving encryption schemes, that enables cloud databases to operate on encrypted data.

Keywords

Widecolumnstores Cloud-databases HBase Cassandra cryptography 

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Institut für InformatikGeorg-August-Universität GöttingenGöttingenDeutschland

Personalised recommendations