, Volume 11, Issue 1, pp 26–29 | Cite as

Rapid bonding of non-metallic materials

Bonding and sealing via induction curing
  • Arno Maurer
  • Christian Lammel
Plant and Processing Equipment

Bonding by means of electromagnetic induction enables rapid processes and a curing over the entire volume, even with bond lines that are thick or difficult to access. For induction curing, single-component and two-component systems are available for bonding and sealing of both metallic materials and non-conductive substrates.

Similar to the well-known induction hobs, by means of which meals can be rapidly and properly heated in the modern kitchen, the heating of materials via electromagnetic induction is an established industrial process, for example, in metallurgy. The energy is induced into the material by alternating electromagnetic fields in the kHz range and is converted into heat via eddy current and magnetic losses. This method can be used for rapid bonding of materials with hot-curing adhesives, especially if the adhesive joint is difficult to access by using other heat sources or when the conventional process would take too long.

In the case of electrically conductive, metal...



We would like to thank IFF GmbH and Evonik Industries AG for their support with the measurements and for the invaluable technical discussions.


  1. /1/.
    Induction Heating Curing Type Adhesive. JP3045683 (A) - 1991-02-27.Google Scholar
  2. /2/.
    Induction Curing Epoxy Resin System. JP2115257(A) - 1990-04-27.Google Scholar
  3. /3/.
    O. Hahn, A. Kaimann, Schnelle und schonende Aushärtung von Kunststoffklebungen (Fast and gentle curing of plastic bonds). German magazine Adhäsion 10 (2001), 35–38.Google Scholar
  4. /4/.
    B.K. Fink, S.H. McKnight, J.W. Gillespie, Jr., S. Yarlagadda, Ferromagnetic Nano-Particulate and Conductive Mesh Susceptors for Induction-Based Repair of Composites. Proceedings of Army Science Conference, Norfolk, VA, June 15–17, 1998.Google Scholar
  5. /5/.
    C.J. Yungwirth, E.D. Wetzel, J.M. Sands, Induction Curing of a Phase-Toughened Adhesive. US Army Research Laboratory, ARL-TR-2999, June 2003.Google Scholar
  6. /6/.
    P. Rippl, Wirtschaftliches Fügen von Faser-Kunststoff-Verbundstrukturen mittels induktiver Erwärmung unter Einsatz flexibler Handhabungssysteme. (Efficient bonding of fibre-reinforced polymer composite structures by means of induction heating using flexible handling systems). Abschlusspräsentation (Final presentation), Kuka Systems, Augsburg, April 23, 2009.Google Scholar
  7. /7/.
    K. Dilger, M. Frauenhofer, Innovative CFK-Fertigungsverfahren. (Innovative CFRP manufacturing). DLR Wissenschaftstag (German Aerospace Center Science Day), Brunswick, 2008.Google Scholar
  8. /8/.
    M. Koyro, Abschlussbericht zum BMBF-Verbundprojekt „NanoBond — Entwicklung von Verfahrenstechniken zum Fügen und Entfügen lackierter Bauteilkomponenten auf der Basis nanopartikel-modifizierter Klebstoffe”. Final report on the BMBF project “NanoBond — Development of methods for bonding and debonding painted structural components based on nanoparticle modified adhesives”. University of Paderborn, 2006.Google Scholar
  9. /9/.
    J. Kolbe, A. Hartwig, Kleben und Entkleben auf Knopfdruck. (Bonding and debonding on demand). IFAM Annual Report 2006/2007, 72–75.Google Scholar
  10. /10/.
    M. Frauenhofer, Schnellhärtung struktureller Verbundklebungen mittels elektromagnetischer Wechselfelder (Rapid curing of structural composite bonds by means of alternating electromagnetic fields). Dissertation, TU Braunschweig 2010. Forschungsberichte des Instituts für Schweißtechnik; Bd. 26, (Research reports of the Institute of Welding Technology; Vol. 26) Shaker, Aachen, 2010.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Polytec PT GmbHWaldbronnGermany
  2. 2.IFF GmbHIsmaningGermany

Personalised recommendations