Skip to main content
Log in

Jean Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace.

Acta Math. 63 (1934), 193–248

  • Classics Revisited
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. The existence of the derivatives \(\frac{\partial u_{j}}{\partial t}\), \(\frac{\partial^{2} u _{j}}{\partial x_{k} \partial x_{l}}\), \(\frac{\partial p}{\partial x _{j}}\) is necessary neither for the basic equations [integral formulation of conservation laws] nor for the systems [integral representation of a solution by hydrodynamic potentials], but we had to require them only for the proof.

  2. Moreover, we can verify that the total kinetic energy of the fluid is bounded in time; but it seems to be impossible to deduce from this fact that the motion itself is regular.

  3. […] it is an incorrect terminology to speak about the velocity of the fluid at a particular point […] What is to be understood in hydrodynamics by the velocity of the fluid is the mean value of velocities of molecules within a certain domain, being small but nevertheless containing many molecules.

  4. […] if we want to continue this calculus we will obtain a new interval \((T_{0}, T_{0}+T_{1})\) where in general \(T_{1}\) differs from \(T_{0}\). If the numbers \(T_{0}\), \(T_{1}\) etc. define a convergent series, the calculus will stop at a finite time \(t\). […] it seems to be probable that irregularities will show up in the interior of a viscous incompresssible fluid even if […] and the initial value are completely regular.

  5. Unfortunately, I did not succeed in studying the system (6). Thus we let open the question whether irregularities show up or not.

  6. I could not prove a theorem of uniqueness stating that to any initial value there corresponds a unique turbulent solution.

  7. We tried to prove the existence of a solution of the Navier-Stokes system for any initial value: we succeeded only by dispensing with the regularity of the solution at certain instants, suitably chosen such that this set has vanishing measure; […]

  8. …simplifies a lot the presentation and throws more light on the main difficulties.

  9. The remarkable investigations Leray dedicates to the question of differentiability, suggest a curious difference between dimensions \(n=2\) and \(n=3\). Whereas in the first case, at least when \(G\) equals the whole plane, we succeed in proving that the solution is infinitely many times continuously differentiable, the methods fail when \(n \geq3\) […] Also the failure of proofs of uniqueness in three dimensions is strange […] It is hard to believe that the initial value problem of viscous fluids for \(n=3\) could have more than one solution […]

  10. For the definition and properties of Besov spaces see [81].

  11. The theoretical study of fluid flow with an initial value leads, in very different cases, to the same conclusion: the existence of at least one weak solution which is regular and unique near the initial time, and which exists for all time. That’s a theorem on “weak” existence; do there exist theorems about regularity and uniqueness to complete it? In other words, a fluid flow initially regular remains so over a certain interval of time; then it goes on indefinitely; but does it remain regular and well-determined? We do not know the answer to this double question. It was addressed sixty years ago in an extremely particular case [48]. At that time H. Lebesgue, when asked for, declared: “Do not spend too much time on such a refractory question. Do something different!”.

References

  1. Amann, H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auscher, P., Tchamitchian, Ph.: Espaces critiques pour le système des équations de Navier-Stokes incompressibles (2008). arXiv:0812.1158v2

  3. Borchers, W., Miyakawa, T.: \(L^{2}\) Decay for the Navier-Stokes flow in halfspaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borchers, W., Miyakawa, T.: Algebraic \(L^{2}\) decay for Navier-Stokes flows in exterior domains. Acta Math. 165, 189–227 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borchers, W., Miyakawa, T.: Algebraic \(L^{2}\) decay for Navier-Stokes flows in exterior domains. II. Hiroshima Math. J. 21, 621–640 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Borel, A., Henkin, G.M., Lax, P.D.: Jean Leray (1906–1998). Not. Am. Math. Soc. 47, 350–359 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. In: Handbook of Mathematical Fluid Dynamics, vol. III, pp. 161–244. North-Holland, Amsterdam (2004)

    Google Scholar 

  8. Cannone, M.: A generalization of a theorem by Kato on Navier-Stokes equations. Rev. Mat. Iberoam. 13, 515–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cannone, M., Meyer, Y., Planchon, F.: Solutions auto-similaires des équations de Navier-Stokes in \(\mathbb{R}^{3}\). Séminaire X-EDP, vol. VIII. Ecole Polytechnique, Palaiseau (1994)

    MATH  Google Scholar 

  10. Cannone, M., Planchon, F.: Self-similar solutions for Navier-Stokes equations in \(\mathbb {R}^{3}\). Commun. Partial Differ. Equ. 21, 179–193 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chemin, J.-Y.: Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray. Semin. Congr. 9, 99–123 (2004), Soc. Math. France

    MATH  Google Scholar 

  12. Chern, S.S., Hirzebruch, F.: Wolf Prize in Mathematics, vol. 1. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  13. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier-Stokes equations. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 171–175. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Ekeland, I.: Obituary: Jean Leray (1906–1998). Nature 397, 482 (1999)

    Article  Google Scholar 

  16. Escauriaza, L., Seregin, G.A., Šverák, V.: \(L_{3,\infty}\)-solutions of Navier-Stokes equations and backward uniqueness. Usp. Mat. Nauk 58, 3–44 (2003) (Russian). Russian Math. Surveys 58, 211–250 (2003) (English)

    Article  MathSciNet  Google Scholar 

  17. Farwig, R., Giga, Y., Hsu, P.-Y.: Initial values for the Navier-Stokes equations in spaces with weights in time. Funkc. Ekvacioj 59, 199–216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farwig, R., Giga, Y.: Well-chosen weak solutions of the instationary Navier-Stokes system and their uniqueness. Hokkaido Math. J. (to appear)

  19. Farwig, R., Giga, Y., Hsu, P.-Y.: The Navier-Stokes equations with initial values in Besov spaces of type \(B^{1+3/q}_{q, \infty}\). Fachbereich Mathematik, Technische Universität, Darmstadt (2016). Preprint no. 2709

  20. Farwig, R., Giga, Y., Hsu, P.-Y.: On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces. Fachbereich Mathematik, Technische Universität, Darmstadt (2016). Preprint no. 2710

  21. Farwig, R., Kozono, H.: Weak solutions of the Navier-Stokes equations with non-zero boundary values in an exterior domain satisfying the strong energy inequality. J. Differ. Equ. 256, 2633–2658 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farwig, R., Kozono, H., Wegmann, D.: Decay of non-stationary Navier-Stokes flow with nonzero Dirichlet boundary data. Indiana Univ. Math. J. (2016, accepted)

  23. Farwig, R., Kozono, H., Wegmann, D.: Existence of strong solutions and decay of turbulent solutions of Navier-Stokes flow with nonzero Dirichlet boundary data. Manuscript 2016

  24. Farwig, R., Kozono, H., Sohr, H.: An \(L^{q}\)-approach to Stokes and Navier-Stokes in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Farwig, R., Kozono, H., Sohr, H.: Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence. Rend. Semin. Mat. Univ. Padova 125, 51–70 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Farwig, R., Riechwald, F.: Very weak solutions to the Navier-Stokes system in general unbounded domains. J. Evol. Equ. 15, 253–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Farwig, R., Sohr, H.: Optimal initial value conditions for the existence of local strong solutions of the Navier-Stokes equations. Math. Ann. 345, 631–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Farwig, R., Sohr, H., Varnhorn, W.: On optimal initial value conditions for local strong solutions of the Navier-Stokes equations. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 55, 89–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Farwig, R., Sohr, H., Varnhorn, W.: Extensions of Serrin’s uniqueness and regularity conditions for the Navier-Stokes equations. J. Math. Fluid Mech. 14, 529–540 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Farwig, R., Taniuchi, Y.: On the energy equality of Navier-Stokes equations in general unbounded domains. Arch. Math. 95, 447–456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Faxén, H.: Fredholm’s integral equations in the hydrodynamics of viscous fluids. Ark. Mat. Astron. Fys. 21A(14), 1–40 (1929)

    Google Scholar 

  32. Fefferman, Ch.: Existence and smoothness of the Navier-Stokes equation. http://www.claymath.org/sites/default/files/navierstokes.pdf

  33. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  34. Galdi, G.P., Maremonti, P.: Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains. Arch. Ration. Mech. Anal. 94, 253–266 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Giga, Y.: Solution for semilinear parabolic equations in \(L^{p}\) and regularity of weak solutions for the Navier-Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Giga, Y., Miyakawa, T.: Solutions in \(L_{r}\) of the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)

    Article  MATH  Google Scholar 

  37. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hopf, E.: Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Ann. 117, 764–775 (1940, 1941)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kajikiya, R., Miyakawa, T.: On \(L^{2}\) decay of weak solutions of the Navier-Stokes equations in \(R^{n}\). Math. Z. 192, 135–148 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kantor, J.-M.: Jean Leray (1906–1988). Gaz. Math. 84(Suppl.) (2000), Soc. Math. France, Paris

  42. Kato, T.: Strong \(L^{p}\)-solutions of the Navier-Stokes equation in \(\mathbb{R}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids. Transl. Am. Math. Soc., Ser. 2 24, 79–106 (1963)

    MATH  Google Scholar 

  44. Kozono, H., Sohr, H.: Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis 16, 255–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kozono, H., Yamazaki, M.: Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space \(L^{n,\infty}\). Houst. J. Math. 21, 755–799 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1963)

    MATH  Google Scholar 

  47. Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 9, 1–82 (1933). PhD Thesis, published also as: Thèses françaises de l’entre-deux-guerres 142 (1933)

    MATH  Google Scholar 

  48. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  49. Leray, J.: Aspects de la mécanique théorique des fluides. C. R. Acad. Sci., Sér. Gén. Vie II, 287–290 (1994)

    MATH  Google Scholar 

  50. Leray, J.: Autobiography (Extracts). Exposition virtuelle sur Jean Leray. Des Mathématiques à Nantes. http://www.math.sciences.univ-nantes.fr/fr/pages/354

  51. Leray, J.: Essai sur les mouvements plans d’un fluide visqueux que limitent des parois. J. Math. Pures Appl. 13, 331–418 (1933)

    MATH  Google Scholar 

  52. Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Éc. Norm. Supér. 51, 45–78 (1934)

    Article  MATH  Google Scholar 

  53. Lichtenstein, L.: Über einige Existenzprobleme der Hydrodynamik. Dritte Abhandlung. Permanente Bewegungen einer homogenen inkompressiblen zähen Flüssigkeit. Math. Z. 28, 387–415 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lions, P.L., Masmoudi, N.: Unicité des solutions faibles de Navier-Stokes dans \(L^{N}(\varOmega)\). C. R. Acad. Sci., Sér. 1 327, 491–496 (1998)

    MATH  Google Scholar 

  55. Málek, J., Nečas, J., Pokorný, M., Schonbek, M.E.: On possible singular solutions to the Navier-Stokes equations. Math. Nachr. 199, 97–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Masuda, K.: Weak solutions of the Navier-Stokes equations. Tohoku Math. J. 36, 623–646 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. Meyer, Y.: Wavelets, Paraproducts and Navier-Stokes Equations. Current Developments in Mathematics. International Press, Boston (1997)

    Google Scholar 

  58. Mikhailov, A.S., Shilkin, T.N.: \(L_{3,\infty}\)-solutions to the 3D-Navier-Stokes system in a domain with a curved boundary. Zap. Nauč. Semin. POMI 336, 133–152 (2006) (Russian). J. Math. Sci. 143, 2924–2935 (2007) (English)

    MathSciNet  MATH  Google Scholar 

  59. Miller, J.R., O’Leary, M., Schonbek, M.: Nonexistence of singular pseudo-self-similar solutions of the Navier-Stokes system. Math. Ann. 319, 809–815 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. Miyakawa, T., Sohr, H.: On energy inequality, smoothness and large time behavior in \(L^{2}\) for weak solutions of the Navier-Stokes equations in exterior domains. Math. Z. 199, 455–478 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  61. Monniaux, S.: On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains. J. Funct. Anal. 195, 1–11 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Nečas, J., Růžička, M., Šverák, V.: Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci., Sér. 1 Math. 323, 245–249 (1996)

    MATH  Google Scholar 

  63. Nečas, J., Růžička, M., Šverák, V.: On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176, 283–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  64. Odqvist, F.K.G.: Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math.Z. 32, 329–375 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ohyama, T.: Interior regularity of weak solutions of the time-dependent Navier-Stokes equation. Proc. Jpn. Acad. 36, 273–277 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  66. Oseen, C.W.: Sur les formules de Green généralisées qui se présentent dans l’hydrodynamique et sur quelques-unes de leurs applications. Acta Math. 34, 205–284 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  67. Oseen, C.W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft, Leipzig (1927)

    MATH  Google Scholar 

  68. Rautmann, R.: On optimum regularity of Navier-Stokes solutions at time \(t=0\). Math. Z. 184, 141–149 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  69. Schonbek, M.E.: Large time behaviour of solutions to the Navier-Stokes equations. Commun. Partial Differ. Equ. 11, 733–763 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schonbek, M.E.: Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Am. Math. Soc. 4, 423–449 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  71. Seregin, G.: On smoothness of \(L_{3,\infty}\)-solutions to the Navier-Stokes equations up to the boundary. Math. Ann. 332, 219–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  72. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 185–187 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  73. Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)

    Google Scholar 

  74. Shinbrot, M.: The energy equation for the Navier-Stokes system. SIAM J. Math. Anal. 5, 948–954 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  75. Sigmund, A.M., Michor, P., Sigmund, K.: Leray in Edelbach. Math. Intell. 27(2), 41–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z. 184, 359–375 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sohr, H.: A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  79. Sohr, H., von Wahl, W.: On the singular set and the uniqueness of weak solutions of the Navier-Stokes equations. Manuscr. Math. 49, 27–59 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  80. Sohr, H., von Wahl, W., Wiegner, M.: Zur Asymptotik der Gleichungen von Navier-Stokes. Nachr. Akad. Wiss. Gött., 2, no. 3 (1986)

  81. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, New York, Oxford (1978). 1978

    MATH  Google Scholar 

  82. Tsai, T.-P.: On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143, 29–51 (1998). Erratum: Arch. Ration. Mech. Anal. 147, 363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wiegner, M.: Decay results for weak solutions of the Navier-Stokes equations on \(\mathbb{R}^{n}\). J. Lond. Math. Soc. 35, 303–313 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Farwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farwig, R. Jean Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace.. Jahresber. Dtsch. Math. Ver. 119, 249–272 (2017). https://doi.org/10.1365/s13291-017-0160-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-017-0160-y

Keywords

Navigation