The Excitation Spectrum for Bose Fluids with Weak Interactions

Survey Article


We review recent progress towards a rigorous understanding of the excitation spectrum of bosonic quantum many-body systems. In particular, we explain how one can rigorously establish the predictions resulting from the Bogoliubov approximation in the mean field limit. The latter predicts that the spectrum is made up of elementary excitations, whose energy behaves linearly in the momentum for small momentum. This property is crucial for the superfluid behavior of the system. We also discuss a list of open problems in this field.


Schrödinger equation Quantum statistical mechanics Bose–Einstein condensation Dilute Bose gas Superfluidity Excitation spectrum 

Mathematics Subject Classification

82B10 82-02 46N50 


  1. 1.
    Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995) CrossRefGoogle Scholar
  2. 2.
    Aschbacher, W.H., Fröhlich, J., Graf, G.M., Schnee, K., Troyer, M.: Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys. 43, 3879–3891 (2002) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008) CrossRefGoogle Scholar
  4. 4.
    Bogolubov, N.: On the theory of superfluidity. USSR J. Phys. 11, 23–32 (1947) MathSciNetGoogle Scholar
  5. 5.
    Bose, S.N.: Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924) CrossRefMATHGoogle Scholar
  6. 6.
    Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008) CrossRefGoogle Scholar
  7. 7.
    Cornean, H.D., Dereziński, J., Ziń, P.: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas. J. Math. Phys. 50, 062103 (2009) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999) CrossRefGoogle Scholar
  9. 9.
    Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995) CrossRefGoogle Scholar
  10. 10.
    Dereziński, J., Napiórkowski, M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Preprint. arXiv:1305.3641
  11. 11.
    Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Einstein, A.: Quantentheorie des einatomigen idealen Gases. Sitzber. Preuss. Akad. Wiss., phys.-math. Kl., 261–267 (1924); 3–14 (1925) Google Scholar
  13. 13.
    Fetter, A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009) CrossRefGoogle Scholar
  14. 14.
    Ginibre, J.: On the asymptotic exactness of the Bogoliubov approximation for many boson systems. Commun. Math. Phys. 8, 26–51 (1968) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Giuliani, A., Seiringer, R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322, 559–591 (2013) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Guo, Y., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kennedy, T., Lieb, E.H., Shastry, B.S.: The XY model has long-range order for all spins and all dimensions greater than one. Phys. Rev. Lett. 61, 2582–2584 (1988) CrossRefGoogle Scholar
  19. 19.
    Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Preprint. arXiv:1303.0981
  20. 20.
    Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean-field regime. Preprint. arXiv:1307.0665
  21. 21.
    Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Preprint. arXiv:1211.2778
  22. 22.
    Lieb, E.H.: Exact analysis of an interacting Bose gas. II. The excitation spectrum. Phys. Rev. 130, 1616–1624 (1963) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002) CrossRefGoogle Scholar
  25. 25.
    Lieb, E.H., Solovej, J.P.: Ground state energy of the one-component charged Bose gas. Commun. Math. Phys. 217, 127–163 (2001). See also: Errata 225, 219–221 (2002) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Lieb, E.H., Solovej, J.P.: Ground state energy of the two-component charged Bose gas. Commun. Math. Phys. 252, 485–534 (2004) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998) CrossRefGoogle Scholar
  28. 28.
    Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000) CrossRefGoogle Scholar
  29. 29.
    Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars Bd. 34. Birkhäuser, Basel (2005). arXiv:cond-mat/0610117 Google Scholar
  30. 30.
    Lieb, E.H., Seiringer, R., Yngvason, J.: Justification of c-number substitutions in bosonic Hamiltonians. Phys. Rev. Lett. 94, 080401 (2005) CrossRefGoogle Scholar
  31. 31.
    Schlein, B.: Effective equations for quantum dynamics. Preprint. arXiv:1208.0185
  32. 32.
    Seiringer, R.: Gross-Pitaevskii theory of the rotating Bose gas. Commun. Math. Phys. 229, 491–509 (2002) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Seiringer, R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A, Math. Gen. 36, 9755–9778 (2003) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011) CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Seiringer, R.: Hot topics in cold gases—a mathematical physics perspective. Jpn. J. Math. 8, 185–232 (2013) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Solovej, J.P.: Upper bounds to the ground state energies of the one- and two-component charged Bose gases. Commun. Math. Phys. 266, 797–818 (2006) CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Sütő, A.: Equivalence of Bose–Einstein condensation and symmetry breaking. Phys. Rev. Lett. 94, 080402 (2005) CrossRefGoogle Scholar
  38. 38.
    Yau, H.-T., Yin, J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453–503 (2009) CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Zagrebnov, V.A., Bru, J.-B.: The Bogoliubov model of weakly imperfect Bose gas. Phys. Rep. 350, 291–434 (2001) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author 2014. Published by Springer-Verlag GmbH Berlin Heidelberg in cooperation with the Deutsche Mathematiker-Vereinigung. All rights reserved. 2014

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria

Personalised recommendations