Abstract
Reversed flow gas chromatography (RFGC) was applied for the kinetic study of the alcoholic fermentation processes conducted with cells of the alcohol-resistant and psychrophilic Saccharomyces cerevisiae AXAZ-1 yeast strain, either free or immobilized on wheat, barley and corn grains as well as on potato pieces. Repeated alcoholic fermentations with must of varying initial glucose concentrations were performed in order to estimate the catalytic efficiency of the biocatalysts used in the present study. With the RFGC method, the distinction of the duration of alcoholic fermentation phases was achieved, which may be correlated to the phases of AXAZ-1 cells growth cycle. The rate constants of ethanol production for each phase of the alcoholic fermentations, conducted with free and immobilized cells, were also determined with the aid of RFGC, confirming the predominance of the immobilized against free cells in the fermentation process. Comparing the supports used for immobilization, wheat and barley grains seemed to be more efficient than corn grains and potato pieces, as they provided a higher number of immobilized cells and rate constant values.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Fleet GH, Heard GM (1993) Yeasts: growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology, Harwood Academic Publishers, Australia, pp 27–54. doi:10.1016/S0168-1605(03)00245-9
Garcia MA, Oliva J, Barba A, Camara MA, Pardo F, Diaz-Plaza EM (2004) J Agric Food Chem 52:1241–1247. doi:10.1021/jf030546f
Ohlson S, Larsson PO, Mosbach K (1979) Eur J Appl Microbiol Biotechnol 7:103–110
Loukatos P, Kiaris M, Ligas I, Bourgos G, Kanellaki M, Komaitis M, Koutinas AA (2000) Appl Biochem Biotechnol 89:1–13
Bakoyianis V, Kanellaki M, Kaliafas A, Koutinas AA (1992) J Agric Food Chem 40:1293–1296. doi:10.1021/jf00019a042
Demuyakor B, Ohta Y (1992) Appl Microbiol Biotechnol 36:717–721
Smidsrod O, Skjak G (1990) Trends Biotechnol 8:71–78. doi:10.1016/0167-7799(90)90139-O
Bardi EP, Koutinas AA (1994) J Agric Food Chem 42:221–226. doi:10.1021/jf00037a040
Holcberg IB, Margalith P (1981) Eur J Appl Microbiol Biotechnol 13:133–140
Kourkoutas Y, Komaitis M, Koutinas AA, Kanellaki M (2001) J Agric Food Chem 49:1417–1425. doi:10.1021/jf000942n
Kourkoutas Y, Komaitis M, Koutinas AA, Kaliafas A, Kanellaki M, Marchant R, Banat IM (2003) Food Chem 82:353–360. doi:10.1016/S0308-8146(02)00554-X
Farmakis L, Koliadima A (2005) Biotechnol Prog 21:971–977
Farmakis L, Kapolos J, Koliadima A, Karaiskakis G (2007) Food Res Int 40:717–724. doi:10.1016/j.foodres.2007.01.009
Lainioti GCh, Kapolos J, Koliadima A, Karaiskakis G (2010) J Chromatogr A 1217:1813–1820. doi:10.1016/j.chroma.2010.01.042
Katsanos NA, Georgiadou I (1980) J Chem Soc Chem Commun 5:242–243
Katsanos NA, Karaiskakis G (1982) J Chromatogr 237:1–14
Katsanos NA, Kapolos J (1989) Anal Chem 61:2231–2237. doi:10.1021/ac00195a004
Katsanos NA, Karaiskakis G (1984) Adv Chromatogr 24:125–180
Gavril D, Karaiskakis G (1997) Instrum Sci Technol 25:217–234
Karaiskakis G, Katsanos NA, Niotis A (1982) Chromatographia 245:21–29
Roubani-Kalantzopoulou F (1988) J Chromatogr A 806:293–303
Karaiskakis GA (1985) J Chromatogr Sci 23:360–363
Katsanos NA, Karaiskakis G, Agathonos P (1986) J Chromatogr 349:369–376
Economopoulos N, Athanassopoulos N, Katsanos NA, Karaiskakis G, Agathonos P, Vassilakos Ch (1992) Sep Sci Technol 27:2055–2070
Stolyarov BV, Katsanos NA, Agathonos P, Kapolos J (1991) J Chromatogr 550:181–192
Gavril D, Koliadima A, Karaiskakis G (1999) Langmuir 15:3798–3806. doi:10.1021/la981653k
Sotiropoulou V, Katsanos NA, Metaxa H, Roubani-Kalantzopoulou F (1996) Chromatographia 42:441–450
Gavril D, Karaiskakis G (1999) J Chromatogr A 845:67–83
Argiriou T, Kalliafas A, Psarianos K, Kana K, Kanellaki M, Koutinas AA (1992) Appl Biochem Biotechnol 36:153–161
Katsanos NA (1988) Flow Perturbation Gas Chromatography, Marcel Dekker (ed), New York
Karaiskakis G, Katsanos NA (1984) J Phys Chem 88:3674–3678
Ozilgen M, Celik M, Bozoglu TF (1991) Enzyme Microb Technol 13:252–256
Ciani M, Picciotti G (1995) Biotechnol Lett 17:1247–1250
Blanco M, Peinado A, Mas J (2006) Anal Chim Acta 556:364–373
Chen L-J, Xu Y-X, Bai F-W, Anderson WA, Moo-Yong M (2005) Biotechnol Bioprocess E 10:115–121
Birol G, Doruker P, Kirdar B, Onsan ZI, Ulgen K (1998) Process Biochem 33(7):763–771
Giovanelli G, Peri C, Parravicini E (1996) Am J Enol Vitic 47:429–434
Acknowledgments
This paper is part of the 03ED657 research project, implemented within the framework of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National and Community Funds (20% from the Greek Ministry of Development-General Secretariat of Research and Technology and 80% from E.U.-European Social Fund).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lainioti, G.C., Kapolos, J., Farmakis, L. et al. Kinetic Study of the Alcoholic Fermentation Process, in the Presence of Free and Immobilized Saccharomyces Cerevisiae Cells, at Different Initial Glucose Concentrations by Reversed Flow GC. Chroma 72, 1149–1156 (2010). https://doi.org/10.1365/s10337-010-1790-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1365/s10337-010-1790-8


