Skip to main content
Log in

Kinetic Study of the Alcoholic Fermentation Process, in the Presence of Free and Immobilized Saccharomyces Cerevisiae Cells, at Different Initial Glucose Concentrations by Reversed Flow GC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Reversed flow gas chromatography (RFGC) was applied for the kinetic study of the alcoholic fermentation processes conducted with cells of the alcohol-resistant and psychrophilic Saccharomyces cerevisiae AXAZ-1 yeast strain, either free or immobilized on wheat, barley and corn grains as well as on potato pieces. Repeated alcoholic fermentations with must of varying initial glucose concentrations were performed in order to estimate the catalytic efficiency of the biocatalysts used in the present study. With the RFGC method, the distinction of the duration of alcoholic fermentation phases was achieved, which may be correlated to the phases of AXAZ-1 cells growth cycle. The rate constants of ethanol production for each phase of the alcoholic fermentations, conducted with free and immobilized cells, were also determined with the aid of RFGC, confirming the predominance of the immobilized against free cells in the fermentation process. Comparing the supports used for immobilization, wheat and barley grains seemed to be more efficient than corn grains and potato pieces, as they provided a higher number of immobilized cells and rate constant values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Fleet GH, Heard GM (1993) Yeasts: growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology, Harwood Academic Publishers, Australia, pp 27–54. doi:10.1016/S0168-1605(03)00245-9

  2. Garcia MA, Oliva J, Barba A, Camara MA, Pardo F, Diaz-Plaza EM (2004) J Agric Food Chem 52:1241–1247. doi:10.1021/jf030546f

    Article  CAS  Google Scholar 

  3. Ohlson S, Larsson PO, Mosbach K (1979) Eur J Appl Microbiol Biotechnol 7:103–110

    Article  CAS  Google Scholar 

  4. Loukatos P, Kiaris M, Ligas I, Bourgos G, Kanellaki M, Komaitis M, Koutinas AA (2000) Appl Biochem Biotechnol 89:1–13

    Article  CAS  Google Scholar 

  5. Bakoyianis V, Kanellaki M, Kaliafas A, Koutinas AA (1992) J Agric Food Chem 40:1293–1296. doi:10.1021/jf00019a042

    Article  CAS  Google Scholar 

  6. Demuyakor B, Ohta Y (1992) Appl Microbiol Biotechnol 36:717–721

    Article  CAS  Google Scholar 

  7. Smidsrod O, Skjak G (1990) Trends Biotechnol 8:71–78. doi:10.1016/0167-7799(90)90139-O

    Article  CAS  Google Scholar 

  8. Bardi EP, Koutinas AA (1994) J Agric Food Chem 42:221–226. doi:10.1021/jf00037a040

    Article  CAS  Google Scholar 

  9. Holcberg IB, Margalith P (1981) Eur J Appl Microbiol Biotechnol 13:133–140

    Article  CAS  Google Scholar 

  10. Kourkoutas Y, Komaitis M, Koutinas AA, Kanellaki M (2001) J Agric Food Chem 49:1417–1425. doi:10.1021/jf000942n

    Article  CAS  Google Scholar 

  11. Kourkoutas Y, Komaitis M, Koutinas AA, Kaliafas A, Kanellaki M, Marchant R, Banat IM (2003) Food Chem 82:353–360. doi:10.1016/S0308-8146(02)00554-X

    Article  CAS  Google Scholar 

  12. Farmakis L, Koliadima A (2005) Biotechnol Prog 21:971–977

    Article  CAS  Google Scholar 

  13. Farmakis L, Kapolos J, Koliadima A, Karaiskakis G (2007) Food Res Int 40:717–724. doi:10.1016/j.foodres.2007.01.009

    Article  CAS  Google Scholar 

  14. Lainioti GCh, Kapolos J, Koliadima A, Karaiskakis G (2010) J Chromatogr A 1217:1813–1820. doi:10.1016/j.chroma.2010.01.042

    Article  CAS  Google Scholar 

  15. Katsanos NA, Georgiadou I (1980) J Chem Soc Chem Commun 5:242–243

    Article  Google Scholar 

  16. Katsanos NA, Karaiskakis G (1982) J Chromatogr 237:1–14

    Article  CAS  Google Scholar 

  17. Katsanos NA, Kapolos J (1989) Anal Chem 61:2231–2237. doi:10.1021/ac00195a004

    Article  CAS  Google Scholar 

  18. Katsanos NA, Karaiskakis G (1984) Adv Chromatogr 24:125–180

    CAS  Google Scholar 

  19. Gavril D, Karaiskakis G (1997) Instrum Sci Technol 25:217–234

    Article  CAS  Google Scholar 

  20. Karaiskakis G, Katsanos NA, Niotis A (1982) Chromatographia 245:21–29

    Article  CAS  Google Scholar 

  21. Roubani-Kalantzopoulou F (1988) J Chromatogr A 806:293–303

    Article  Google Scholar 

  22. Karaiskakis GA (1985) J Chromatogr Sci 23:360–363

    CAS  Google Scholar 

  23. Katsanos NA, Karaiskakis G, Agathonos P (1986) J Chromatogr 349:369–376

    Article  Google Scholar 

  24. Economopoulos N, Athanassopoulos N, Katsanos NA, Karaiskakis G, Agathonos P, Vassilakos Ch (1992) Sep Sci Technol 27:2055–2070

    Article  CAS  Google Scholar 

  25. Stolyarov BV, Katsanos NA, Agathonos P, Kapolos J (1991) J Chromatogr 550:181–192

    Article  CAS  Google Scholar 

  26. Gavril D, Koliadima A, Karaiskakis G (1999) Langmuir 15:3798–3806. doi:10.1021/la981653k

    Article  CAS  Google Scholar 

  27. Sotiropoulou V, Katsanos NA, Metaxa H, Roubani-Kalantzopoulou F (1996) Chromatographia 42:441–450

    Article  CAS  Google Scholar 

  28. Gavril D, Karaiskakis G (1999) J Chromatogr A 845:67–83

    Article  CAS  Google Scholar 

  29. Argiriou T, Kalliafas A, Psarianos K, Kana K, Kanellaki M, Koutinas AA (1992) Appl Biochem Biotechnol 36:153–161

    Article  CAS  Google Scholar 

  30. Katsanos NA (1988) Flow Perturbation Gas Chromatography, Marcel Dekker (ed), New York

  31. Karaiskakis G, Katsanos NA (1984) J Phys Chem 88:3674–3678

    Article  CAS  Google Scholar 

  32. Ozilgen M, Celik M, Bozoglu TF (1991) Enzyme Microb Technol 13:252–256

    Article  CAS  Google Scholar 

  33. Ciani M, Picciotti G (1995) Biotechnol Lett 17:1247–1250

    Article  CAS  Google Scholar 

  34. Blanco M, Peinado A, Mas J (2006) Anal Chim Acta 556:364–373

    Article  CAS  Google Scholar 

  35. Chen L-J, Xu Y-X, Bai F-W, Anderson WA, Moo-Yong M (2005) Biotechnol Bioprocess E 10:115–121

    Article  CAS  Google Scholar 

  36. Birol G, Doruker P, Kirdar B, Onsan ZI, Ulgen K (1998) Process Biochem 33(7):763–771

    Article  CAS  Google Scholar 

  37. Giovanelli G, Peri C, Parravicini E (1996) Am J Enol Vitic 47:429–434

    CAS  Google Scholar 

Download references

Acknowledgments

This paper is part of the 03ED657 research project, implemented within the framework of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National and Community Funds (20% from the Greek Ministry of Development-General Secretariat of Research and Technology and 80% from E.U.-European Social Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Karaiskakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lainioti, G.C., Kapolos, J., Farmakis, L. et al. Kinetic Study of the Alcoholic Fermentation Process, in the Presence of Free and Immobilized Saccharomyces Cerevisiae Cells, at Different Initial Glucose Concentrations by Reversed Flow GC. Chroma 72, 1149–1156 (2010). https://doi.org/10.1365/s10337-010-1790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1790-8

Keywords

Profiles

  1. John Kapolos