Skip to main content
Log in

Demonstration of High Speeds with Low Pressure Drops Using 1.8 μm Particles in SFC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The literature contains few, if any, references to the use of sub-2 μm particles in supercritical fluid chromatography (SFC). In this study, the use of 1.8 μm particles in SFC is demonstrated, producing high efficiency chromatograms, less than 1 min long for each of a diverse range of solute families, including steroids, sulfonamides, profens, nucleic acids and xanthenes. Most of the solutes eluted from bare silica with surprisingly good peak shapes. The 3 × 100 mm column packed with 1.8 μm spherical silica particles, produced as many as 22,400 plates (80% of theoretical). Column head pressure did not exceed 410 bar and pressure drops did not exceed 240 bar, even at flows of 3 mL min−1, or modifier concentration as high as 65%. Such performance produced the fastest solvation based chromatography (LC–SFC) reported to date. The chromatographic hardware requirements are met by older (400 bar max.) LC equipment. The speeds observed exceed even ultra high performance liquid chromatography (UHPLC), which requires dramatically higher pressure capability. Sub 2-μm particles appear suitable for routine use, employing common 400 bar LC equipment, only slightly modified to perform SFC, although faster detectors and smaller flow cells enhance performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berger TA (1995) Packed column SFC. Royal Society of Chemistry, London

    Google Scholar 

  2. Pizarro C, Suárez-Iglesias O, Medina I, Bueno JL (2009) J Supercrit Fluids 48:1–8

    Article  CAS  Google Scholar 

  3. Smith SA, Shenai V, Matthews MA (1990) J Supercrit Fluids 3:175–179

    Article  CAS  Google Scholar 

  4. Funazukuri T, Kong CY, Kagei S (2003) J Supercrit Fluids 27:85–96

    Article  CAS  Google Scholar 

  5. Mantell C, Rodríguez M, Martínez de la Ossa E (2004) J Supercrit Fluids 29: 165–173

  6. Funazukuri T, Kong CY, Kagei S (2006) J Supercrit Fluids 38:201–210

    Article  CAS  Google Scholar 

  7. Gere DR, Bored R, McManigill D (1982) Anal Chem 54:736–740

    Article  CAS  Google Scholar 

  8. Gere DR (1983) Science 222:253–259

    Article  CAS  Google Scholar 

  9. Bolanos B, Greig M, Ventura M, Ferrell W, Aurigemma CM, Li H, Quenzer TL, Tivel K, Bylund JKMR, Tran P, Pham C, Phillipson D (2004) Int J Mass Spectrosc 238:85–97

    Article  CAS  Google Scholar 

  10. Berger TA, Berger BK, Majors RE (May, 2010) LC-GC on-line edition

  11. González B, Calvar N, Gómez E, Domínguez A (2007) J Chem Thermo 39:1578–1588

    Article  Google Scholar 

  12. Sih R, Dehghani F, Foster NR (2007) J Supercrit Fluids 41:148–157

    Article  CAS  Google Scholar 

  13. Sih R, Dehgani F, Foster NR (2007) J Supercrit Fluids 41:148–157

    Article  CAS  Google Scholar 

  14. Sih R, Armenti M, Mammucari M, Dehgani F, Foster NR (2008) J Supercrit Fluids 43:460–468

    Article  CAS  Google Scholar 

  15. Sih R, Foster NR (2008) J Supercrit Fluids 47:233–239

    Article  CAS  Google Scholar 

  16. Lacina O, Urbanova J, Poustka J, Hajslova J (2010) J Chromatogr A 1217:648–659

    Article  CAS  Google Scholar 

  17. Gika HG, Theodoridis G, Extance J, Edge AM, Wilson ID (2008) J Chromatogr B 871:279–287

    Article  CAS  Google Scholar 

  18. Guillarme D, Nguyen DY-T, Rudaz S, Veuthey J-L (2007) Eur J Pharm Biopharm 66:475–482

    Article  CAS  Google Scholar 

  19. Ibáñez M, Guerrero C, Sancho JV, Hernández F (2009) J Chromatogr A 1216:2529–2539

    Article  Google Scholar 

  20. Halász I, Endele R, Asshauer J (1975) J Chromatogr 112:37

    Article  Google Scholar 

  21. Horváth C, Lin HJ (1978) J Chromatogr 149:43

    Article  Google Scholar 

  22. de Villiers A, Lauer H, Szucs R, Goodall S, Sandra P (2006) J Chromatogr A 1113:84

    Article  Google Scholar 

  23. Lestremau F, de Villiers A, Lynen F, Cooper A, Szucs R, Sandra P (2007) J Chromatogr A 1138:120

    Article  CAS  Google Scholar 

  24. de Villiers A, Cabooter D, Lynenc F, Desmet G, Sandra P (2009) J Chromatogr A 1216:3270–3279

    Article  Google Scholar 

  25. Berger TA, Fogleman K (2009) “The Peak” on-line edition (LG-GC North America)

  26. Brunelli C, Dunkle M, Morris S, Sandra P (2009) Chromatogr Today, 5–8

  27. Berger TB, Deye JF (1991) J Chromatogr Sci 29:390–395

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry A. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T.A. Demonstration of High Speeds with Low Pressure Drops Using 1.8 μm Particles in SFC. Chroma 72, 597–602 (2010). https://doi.org/10.1365/s10337-010-1699-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1699-2

Keywords

Navigation