Skip to main content
Log in

Combined Effect of Temperature and Ternary Mobile Phase Composition on the Retention in Ternary Isocratic and Gradient Elution RP-LC under Isothermal Conditions. Application to the Retention Prediction of Four Macrolide Antibiotics

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Retention models considering simultaneously ternary mobile phase organic contents and column temperature (T) were developed by a direct combination of equations expressing separately the dependence of the retention upon each of these factors. Thus, a combination of a linear dependence of the logarithm of the solute retention factor, ln k (T), against 1/T, i.e. ln k (T) = a + b/T, and of either a linear or a quadratic dependence of ln k upon the compositions of a binary mobile phase, gave two different expressions for the logarithm of the solute retention factor in terms of both temperature and organic contents in the ternary mobile phase. The effectiveness of the above models was tested in the prediction of isothermal retention of a mixture of four macrolide antibiotics under ternary isocratic and gradient elution conditions using mobile phases modified by methanol and acetonitrile. The limiting case of using ternary eluents with constant ratio of the concentrations of the two organic modifiers was also tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lewis JA, Snyder LR, Dolan JW (1996) J Chromatogr A 721:15–29

    Article  CAS  Google Scholar 

  2. Schoenmakers P, Billiet HAH, Galan L De (1981) J Chromatogr 218:261–284

    Google Scholar 

  3. Barowko M, Oscik-Mendyk B, Borowko P (2005) J Phys Chem B 109:21056–21062

    Article  Google Scholar 

  4. Pappa-Louisi A, Nikitas P, Karageorgaki M (2005) J Chromatogr A 1091:21–31

    Article  CAS  Google Scholar 

  5. Jandera P, Petránek L, Kucerová M (1997) J Chromatogr A 791:1–19

    Article  CAS  Google Scholar 

  6. Euerby MR, Scannapieco F, Rieger H-J, Molnar I (2006) J Chromatogr A 1121:219–227

    Article  CAS  Google Scholar 

  7. Martinez-Pontevedra JA, Pensado L, Casais MC, Cela R (2004) Anal Chim Acta 515:127–141

    Article  CAS  Google Scholar 

  8. Pappa-Louisi A, Nikitas P, Papageorgiou A (2007) J Chromatogr A 1166:126–134

    Article  CAS  Google Scholar 

  9. Dolan JW (2002) J Chromatogr A 965:195–205

    Article  CAS  Google Scholar 

  10. Pous-Torres S, Torres-Lapasio JR, Baeza-Baeza JJ, Garcia-Alvarez-Coque MC (2007) J Chromatogr A 1163:49–62

    Article  CAS  Google Scholar 

  11. Wolcott RG, Dolan JW, Snyder LR (2000) J Chromatogr A 869:3–25

    Article  CAS  Google Scholar 

  12. Heinisch S, Puy G, Barrioulet M-P, Rocca J-L (2006) J Chromatogr A 1118:234–243

    Article  CAS  Google Scholar 

  13. Pappa-Louisi A, Nikitas P, Papachristos K, Zisi C (2008) J Chromatogr A 1201:27–34

    Article  CAS  Google Scholar 

  14. Nageswara Rao R, Shinde DD, Kumar Tallurri MVN (2007) Talanta 73:407–444

    Article  CAS  Google Scholar 

  15. Viseras C, Cela R, Barroso CG, Perez-Bustamante JA (1987) Anal Chim Acta 196:115–122

    Article  CAS  Google Scholar 

  16. Dolan JW, Snyder LR, Blanc T, Van Heukelem L (2000) J Chromatogr A 897:37–50

    Article  CAS  Google Scholar 

  17. Zhu PL, Snyder LR, Dolan JW, Djordjevic NM, Hill DW, Sander LC, Waeghe TJ (1996) J Chromatogr A 756:21–39

    Article  CAS  Google Scholar 

  18. Zhu PL, Dolan JW, Snyder LR (1996) J Chromatogr A 756:41–50

    Google Scholar 

  19. Dolan JW, Snyder LR, Djordjevic NM, Hill DW, Saunders DL, Van Heukelem L, Waeghe TJ (1998) J Chromatogr A 803:1–31

    Article  CAS  Google Scholar 

  20. Snyder LR, Dolan JW (2000) J Chromatogr A 892:107–121

    Article  CAS  Google Scholar 

  21. Dolan JW, Snyder LR, Wolcott RG, Haber P, Baczek T, Kaliszan R, Sander LC (1999) J Chromatogr A 857:41–68

    Article  CAS  Google Scholar 

  22. Hayakawa K, Hirano M, Yoshikawa K, Katsumata N, Tanaka T (1999) J Chromatogr A 849:73–82

    Article  Google Scholar 

  23. Chen MH, Horvath C (1997) J Chromatogr A 788:51–61

    Article  CAS  Google Scholar 

  24. Neue UD, Mazzeo JR (2001) J Sep Sci 24:921–929

    Article  CAS  Google Scholar 

  25. Pappa-Louisi A, Nikitas P, Zisi C, Papachristos K (2008) J Sep Sci 31:2953–2961

    Article  CAS  Google Scholar 

  26. Nikitas P, Pappa-Louisi A (2000) Anal Chim Acta 415:117–125

    Article  CAS  Google Scholar 

  27. Nikitas P, Pappa-Louisi A (2009) J Chromatogr A 1216:1737–1755

    Article  CAS  Google Scholar 

  28. Nikitas P, Pappa-Louisi A (2009) J Liq Chrom Related Technol 32:1527–1576

    Article  CAS  Google Scholar 

  29. Nikitas P, Pappa-Louisi A, Papageorgiou A (2007) J Chromatogr A 1157:178–186

    Article  CAS  Google Scholar 

  30. Pappa-Louisi A, Agrafiotou P (2002) Chromatographia 55:541–547

    Article  CAS  Google Scholar 

  31. Pappa-Louisi A, Papageorgiou A, Zitrou A, Sotiropoulos S, Georgarakis E, Zougrou F (2001) J Chromatogr B 755:57–64

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriani Pappa-Louisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappa-Louisi, A., Agrafiotou, P., Thomas, D. et al. Combined Effect of Temperature and Ternary Mobile Phase Composition on the Retention in Ternary Isocratic and Gradient Elution RP-LC under Isothermal Conditions. Application to the Retention Prediction of Four Macrolide Antibiotics. Chroma 71, 571–576 (2010). https://doi.org/10.1365/s10337-010-1512-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1512-2

Keywords

Navigation