Skip to main content
Log in

Prediction of Electrophoretic Mobilities of Organic Acids Using Artificial Neural Networks with Three Different Training Functions

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The quantitative structure–mobility relationship study has been done to develop the correlation between the electrophoretic mobility of a number of common organic acids in capillary electrophoresis and their molecular structures. Molecular descriptors calculated from structure, were used to represent molecular structures. A subset of the calculated descriptors was used in model development. Multiple linear regression and artificial neural networks are utilized to construct the linear and non-linear prediction models. This paper focuses on investigating the role of weight update function in artificial neural networks. Therefore, artificial neural networks with three different weight update functions including Levenberg–Marquardt algorithm, gradient descent with variable learning rate back propagation and resilient back propagation were trained. Finally, obtained results using three different artificial neural networks have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yao X, Zhang X, Zhang R, Liu M, Hu Z, Fan B (2002) J Comput Chem 26:159–169. doi:10.1016/s0097-8485(01)00093-6

    Article  CAS  Google Scholar 

  2. Jouyban A, Bathish A, Rumbelow SJ, Clark BJ (2001) Analyst 126:101

    Article  Google Scholar 

  3. Wronski M (1993) J Chromatogr A 657:165–173

    Article  CAS  Google Scholar 

  4. Liang HR, Vuorela H, Vuorela P, Riekkola ML, Hiltunen R (1998) J Chromatogr A 798:233–242

    Article  CAS  Google Scholar 

  5. Fu S, Lucy CA (1998) Anal Chem 70:173

    Article  CAS  Google Scholar 

  6. Fu S, Li D, Lucy CA (1998) Analyst 123:1487–1492

    Article  CAS  Google Scholar 

  7. Jalali-Heravi M, Garkani-Nejad Z (2001) J Chromatogr A 927:211–218. doi:10.1016/s0021-9673(01)01099-8

    Article  CAS  Google Scholar 

  8. Jalali-Heravi M, Garkani-Nejad Z (2002) J Chromatogr A 945:173–184. doi:10.1016/s0021-9673(01)01513-8

    Article  CAS  Google Scholar 

  9. Jalali-Heravi M, Shahbazikhah P (2008) Electrophoresis 29:363–374

    Article  CAS  Google Scholar 

  10. Jalali-Heravi M, Asadollahi-Baboli M, Shahbazikhah P (2008) Euro J Med Chem 43:548–556. doi:10.1016/j.ejmech.2007.04.014

    Article  CAS  Google Scholar 

  11. MATLAB, Mathworks Inc (2005) Version 7.1. http://www.mathworks.com/

  12. Noblitt S, Mazzoleni LR, Hering SV, Collett JL Jr, Henry CS (2007) J Chromatogr A 1154:400–406. doi:10.1016/j.chroma.2007.03.069

    Article  CAS  Google Scholar 

  13. Hyperchem, Molecular Modeling System (1993) Hyper Cube Inc.

  14. Stewart JJP, MOPAC (1990) Semi empirical Molecular Orbital Program, QCPE

  15. Leonard JT, Roy K (2006) Bioorg Med Chem 14:1039–1046. doi:10.1016/j.bmcl.2006.031

    Article  CAS  Google Scholar 

  16. Garkani-Nejad Z, Jalili-Jahani N, J Chromatogr Sci, Accepted

  17. SPSS/PC Statistical Package, Version 16 (2004). http://www.spss.com/

  18. Osten DW (1998) J Chemom 2:39–48. doi:10.1002/cem.1180020106

    Google Scholar 

  19. Evants DF, Tominanga T, Hubbard JB, Wolynes PG (1979) J Phys Chem 83:2669–2680

    Article  Google Scholar 

  20. Hubbard JB, Onsager L (1977) J Chem Phys 67:4850–4857

    Article  CAS  Google Scholar 

  21. Kay RL (1991) Pure Appl Chem 63:1393–1399

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The support of this work by Vali-e-Asr University (Grant no. 2745) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Garkani-Nejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garkani-Nejad, Z., Seyedbagheri, S.A. Prediction of Electrophoretic Mobilities of Organic Acids Using Artificial Neural Networks with Three Different Training Functions. Chroma 71, 431–437 (2010). https://doi.org/10.1365/s10337-009-1466-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1466-4

Keywords

Navigation