Skip to main content
Log in

Molecular Modeling of Enantioseparation of Phenylazetidin Derivatives by Cyclodextrins

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

β-Lactams are one of the most widely used types of antibiotics. As β-lactams are chiral, the enantiomeric separation of these compounds was investigated using cyclodextrins, frequently used as chiral separators. Molecular modeling methods were utilized in order to predict possible enantioseparation of four model compounds. Our results revealed that permethylated β-cyclodextrin is more likely to chirally separate the phenylazetidin derivates than the parent β-cyclodextrin. LC experiments using cyclodextrin as chiral stationary phase in most cases confirmed our prediction; however, more experiments and statistical evaluation of the results are needed in order to judge the prediction power of the molecular dynamic method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maier NM, Franco P, Lindner W (2001) J Chromatogr A 906:3–33. doi:10.1016/S0021-9673(00)00532-X

    Article  CAS  Google Scholar 

  2. Zhang Y, Wu DR, Wang-Iverson DB, Tymiak AA (2005) Drug Discov Today 10:571–577. doi:10.1016/S1359-6446(05)03407-0

    Article  CAS  Google Scholar 

  3. Juvancz Z, Kendrovics RB, Ivanyi R, Szente L (2008) Electrophoresis 29:1701–1712. doi:10.1002/elps.200700657

    Article  CAS  Google Scholar 

  4. Juvancz Z, Szejtli J (2002) Trac-Trends in Anal Chem 21:379–388

    Article  CAS  Google Scholar 

  5. Scriba GK (2008) J Sep Sci 31:1991–2011. doi:10.1002/jssc.200800095

    Article  CAS  Google Scholar 

  6. Schneiderman E, Stalcup AM (2000) J Chromatogr B Biomed Sci Appl 745:83–102. doi:10.1016/S0378-4347(00)00057-8

    Article  CAS  Google Scholar 

  7. Berthod A (2006) Anal Chem 78:2093–2099. doi:10.1021/ac0693823

    Article  Google Scholar 

  8. Ali I, Kumerer K, Aboul-Enein HY (2006) Chromatographia 63:295–307. doi:10.1365/s10337-006-0762-5

    Article  CAS  Google Scholar 

  9. Cramer F, Dietsche W (1959) Chem Ber 92:378–384

    Article  CAS  Google Scholar 

  10. Kano K (1997) J Phys Org Chem 10:286–291

    Article  CAS  Google Scholar 

  11. Leffingwell JC (2003) Leffingwell Reports 3:1–27

    Google Scholar 

  12. Yanagida A, Shoji A, Shibusawa Y, Shindo H, Tagashira M, Ikeda M, Ito Y (2006) J Chromatogr A 1112:195–201. doi:10.1016/j.chroma.2005.09.086

    Article  CAS  Google Scholar 

  13. Kodama S, Yamamoto A, Matsunaga A, Yanai H (2004) Electrophoresis 25:2892–2898. doi:10.1002/elps.200305902

    Article  CAS  Google Scholar 

  14. Chankvetadze B (2004) Chem Soc Rev 33:337–347. doi:10.1002/chin.200442280

    Article  CAS  Google Scholar 

  15. Hutt LD, Glavin DP, Bada JL, Mathies RA (1999) Anal Chem 71:4000–4006. doi:10.1021/ac9903959

    Article  CAS  Google Scholar 

  16. Bikadi Z, Kurdi R, Balogh S, Szeman J, Hazai E (2006) Chem Biodivers 3:1266–1278. doi:10.1002/cbdv.200690129

    Article  CAS  Google Scholar 

  17. Smith VK, Ndou TT, Warner IM (1994) J Phys Chem 98:8627–8631. doi:10.1021/j100086a007

    Article  CAS  Google Scholar 

  18. Liu L, Li XS, Song KS, Guo QX (2000) J Mol Struct Theochem 531:127–134. doi:10.1016/S0166-1280(00)00440-1

    Article  CAS  Google Scholar 

  19. Liu L, Guo QX (2004) J Inclusion Phenom Macrocycl Chem 50:95–103. doi:10.1007/s10847-003-8847-3

    CAS  Google Scholar 

  20. Yan CL, Li XH, Xiu ZL, Hao C (2006) J Mol Struct Theochem 764:95–100. doi:10.1016/j.theochem.2006.02.008

    Article  CAS  Google Scholar 

  21. Steiner T, Saenger W (1992) J Am Chem Soc 114:10146–10154. doi:10.1021/ja00052a009

    Article  CAS  Google Scholar 

  22. Del Rio A (2009) J Sep Sci 32:1566–1584. doi:10.1002/jssc.200800693

    Article  CAS  Google Scholar 

  23. Lipkowitz KB, Stoehr CM (1996) Chirality 8:341–350. doi:10.1002/(SICI)1520-636X(1996)8:4<341:AID-CHIR8>3.0.CO;2-I

    Article  CAS  Google Scholar 

  24. Dodziuk H, Ejchart A, Lukin O, Vysotsky MO (1999) J Org Chem 64:1503–1507. doi:10.1021/jo981937+

    Article  CAS  Google Scholar 

  25. Kim H, Jeong K, Lee S, Jung SH (2003) Bull Korean Chem Soc 24:95–98

    Article  CAS  Google Scholar 

  26. Sun M, Liu XH, Yan LS, Luo G, Zhao YF (2003) J Mol Model 9:419–422. doi:10.1007/s00894-003-0162-9

    Article  CAS  Google Scholar 

  27. Kahle C, Deubner R, Schollmayer C, Scheiber J, Baumann K, Holzgrabe U (2005) Eur J Org Chem:1578–1589. doi:10.1002/ejoc.200400673

  28. Waibel B, Scheiber J, Meier C, Hammitzsch M, Baumann K, Scriba GKE, Holzgrabe U (2007) Eur J Org Chem:2921–2930 doi:10.1002/ejoc.200700052

  29. Bednarek E, Bocian W, Michalska K (2008) J Chromatogr A 1193:164–171. doi:10.1016/j.chroma.2008.04.008

    Article  CAS  Google Scholar 

  30. Chankvetadze B, Burjanadze N, Breitkreutz J, Bergander K, Bergenthal D, Kataeva O, Frohlich R, Luftmann H, Blaschke G (2002) J Sep Sci 25:1155–1166. doi:10.1002/1615-9314(20021101)25:15/17<1155:AID-JSSC1155>3.0.CO;2-M

    Article  CAS  Google Scholar 

  31. Bikadi Z, Ivanyi R, Szente L, Ilisz I, Hazai E (2007) Curr Drug Discov Technol 4:282–294. doi:10.2174/157016307783220549

    Article  CAS  Google Scholar 

  32. Zhao CF, Diemert S, Cann NM (2009) J Chromatogr A 1216:5968–5978. doi:10.1016/j.chroma.2009.06.041

    Article  CAS  Google Scholar 

  33. Kondo S, Ohtaki A, Tonozuka T, Sakano Y, Kamitori S (2001) J Biochem 129:423–428

    CAS  Google Scholar 

  34. Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1–5. doi:10.1002/(SICI)1099-1352(199601)9:1<1:AID-JMR241>3.0.CO;2-6

    Article  CAS  Google Scholar 

  35. Solis FJ, Wets RJB (1981) Math Oper Res 6:19–30. doi:10.1287/moor.6.1.19

    Article  Google Scholar 

  36. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  CAS  Google Scholar 

  37. Schuttelkopf AW, van Aalten DMF (2004) Acta Crystallogr Sect D Biol Crystallogr 60:1355–1363. doi:10.1107/S0907444904011679

    Article  CAS  Google Scholar 

  38. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B

    Article  CAS  Google Scholar 

  39. Sun P, Wang C, Armstrong DW, Peter A, Forro E (2006) J Liq Chromatogr Relat Technol 29:1847–1860. doi:10.1002/chir.20714

    Article  CAS  Google Scholar 

  40. Pirkle WH, Tsipouras A, Hyun MH, Hart DJ, Lee CS (1986) J Chromatogr 358:377–384. doi:10.1021/cr00092a006

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial supports of Jedlik Ányos grant 00180/2007, NKFP_07_A3_NATURSEP and OTKA K 67563 are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eszter Hazai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikádi, Z., Fodor, G., Hazai, I. et al. Molecular Modeling of Enantioseparation of Phenylazetidin Derivatives by Cyclodextrins. Chroma 71 (Suppl 1), 21–28 (2010). https://doi.org/10.1365/s10337-009-1461-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1461-9

Keywords

Navigation