Skip to main content
Log in

Postulating Modes of Action of Compounds with Antimicrobial Activities through Metabolomics Analysis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Strains of Staphylococcus aureus and coagulase-negative Staphylococcus with different antibiotic susceptibilities were selected to be the test targets of four synthesized compounds of N-aryl-4-guanidinomethylbenzoates and N-aryl-4-guanidinobenzamides. Minimum inhibitory concentrations of the four compounds showed comparable results to 13 commercial antibiotics. Metabolomics analysis based on GC–MS indicated that the four compounds shared the similar antimicrobial mechanism with clindamycin, but K–B disc diffusion tests implied that their exact binding site might be different from clindamycin or the current macrolide resistance mechanisms had no effect on the actions of synthesized compounds. The major effects of the studied compounds on the intercellular metabolites of S. aureus were the increased intracellular d-glucose, proline, phosphate and propanoic acid concentrations. This study proved metabolomics analysis was a promising tool in antibiotic mechanism research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Olofsson SK, Cars O (2007) Clin Infect Dis 45(2):129–136. doi:10.1086/519256

    Article  Google Scholar 

  2. Yoneyama H, Katsumata R (2006) Biosci Biotechnol Biochem 70(5):1060–1075

    Article  CAS  Google Scholar 

  3. Schmidt FR (2004) Appl Microbiol Biotechnol 63(4):335–343. doi:10.1007/s00253-003-1344-1

    Article  CAS  Google Scholar 

  4. Freiberg C, Brunner N, Macko L, Fischer HP (2006) Mol Cell Proteomics 5(12):2326–2335. doi:10.1074/mcp.M600127-MCP200

    Article  CAS  Google Scholar 

  5. Yu Y, Yi ZB, Liang YZ (2007) FEBS Lett 581(22):4179–4183. doi:10.1016/j.febslet.2007.07.056

    Article  CAS  Google Scholar 

  6. Allen J, Davey HM, Broadhurst D, Rowland JJ, Oliver SG, Kell DB (2004) Appl Environ Microbiol 70(10):6157–6165. doi:10.1128/AEM.70.10.6157-6165.2004

    Article  CAS  Google Scholar 

  7. Yu WY, Yang LX, Xie JS, Zhou L, Jiang XY, Zhu DX et al (2008) Acta Pharmacol Sin 29(2):267–277

    Article  CAS  Google Scholar 

  8. Clinical and Laboratory Standards Institute (CLSI) (2008) Performance standards for antimicrobial disk susceptibility tests; approved standard, 10th edn. Wayne, USA

    Google Scholar 

  9. Clinical and Laboratory Standards Institute (CLSI) (2008) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne, USA

    Google Scholar 

  10. Walsh C (2000) Nature 406(6797):775–781. doi:10.1038/35021219

    Article  CAS  Google Scholar 

  11. Berdy J (1974) Adv Appl Microbiol 18:309–406

    Article  CAS  Google Scholar 

  12. Wang J (2009) Mass Spectrom Rev 28(1):50–92. doi:10.1002/mas.20189

    Article  Google Scholar 

  13. Jana S, Deb JK (2006) Appl Microbiol Biotechnol 70(2):140–150. doi:10.1007/s00253-005-0279-0

    Article  CAS  Google Scholar 

  14. Fisher JF, Meroueh SO, Mobashery S (2005) Chem Rev 105(2):395–424. doi:10.1021/cr030102i

    Article  CAS  Google Scholar 

  15. Domagala JM (1994) J Antimicrob Chemother 33(4):685–706

    Article  CAS  Google Scholar 

  16. Clinical and Laboratory Standards Institute (CLSI) (2007) Performance standards for antimicrobial susceptibility testing; 17th informational supplement. Approved standard MS100–S17. Wayne, USA

    Google Scholar 

  17. Gao P, Shi C, Tian J, Shi X, Yuan K, Lu X et al (2007) J Pharm Biomed Anal 44(1):180–187. doi:10.1016/j.jpba.2007.02.015

    Article  CAS  Google Scholar 

  18. Tian J, Shi C, Gao P, Yuan K, Yang D, Lu X et al (2008) J Chromatogr B Anal Technol Biomed Life Sci 871(2):220–226. doi:10.1016/j.jchromb.2008.06.031

    Article  CAS  Google Scholar 

  19. Tian J, Sang P, Gao P, Fu R, Yang D, Zhang L et al (2009) J Sep Sci 32(13):2281–2288. doi:10.1002/jssc.200800727

    Article  CAS  Google Scholar 

  20. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) Anal Chem 78(3):779–787. doi:10.1021/ac051437y

    Article  CAS  Google Scholar 

  21. Rabinowitz JD, Kimball E (2007) Anal Chem 79(16):6167–6173. doi:10.1021/ac070470c

    Article  CAS  Google Scholar 

  22. Tusher VG, Tibshirani R, Chu G (2001) Proc Natl Acad Sci USA 98(9):5116–5121. doi:10.1073/pnas.091062498

    Article  CAS  Google Scholar 

  23. Eady EA, Ross JI, Tipper JL, Walters CE, Cove JH, Noble WC (1993) J Antimicrob Chemother 31(2):211–217

    Article  CAS  Google Scholar 

  24. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H (1999) Antimicrob Agents Chemother 43(12):2823–2830

    CAS  Google Scholar 

  25. Dixon JM (1968) Can Med Assoc J 99(22):1093–1094

    CAS  Google Scholar 

  26. Barcs I (1985) Acta Microbiol Hung 32(3):241–248

    CAS  Google Scholar 

  27. Watanakunakorn C (1976) Am J Med 60(3):419–425

    Article  CAS  Google Scholar 

  28. Drinkovic D, Fuller ER, Shore KP, Holland DJ, Ellis-Pegler R (2001) J Antimicrob Chemother 48(2):315–316

    Article  CAS  Google Scholar 

  29. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH (2003) J Clin Microbiol 41(10):4740–4744

    Article  CAS  Google Scholar 

  30. Weisblum B, Demohn V (1969) J Bacteriol 98(2):447–452

    CAS  Google Scholar 

  31. Williams TD, Wu H, Santos EM, Ball J, Katsiadaki I, Brown MM et al (2009) Environ Sci Technol 43(16):6341–6348

    Article  CAS  Google Scholar 

  32. Decad GM, Nikaido H (1976) J Bacteriol 128(1):325–336

    CAS  Google Scholar 

  33. Griffiths WJ, Karu K, Hornshaw M, Woffendin G, Wang Y (2007) Eur J Mass Spectrom 13(1):45–50. doi:10.1255/ejms.850

    Article  CAS  Google Scholar 

  34. Chen C, Gonzalez FJ, Idle JR (2007) Drug Metab Rev 39(2–3):581–597. doi:10.1080/03602530701497804

    Article  CAS  Google Scholar 

  35. Khoo SH, Al-Rubeai M (2007) Biotechnol Appl Biochem 47(2):71–84. doi:10.1042/BA20060221

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to express our gratitude to the technologists in Dalian Center of Clinical Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wen, J., Wang, Y. et al. Postulating Modes of Action of Compounds with Antimicrobial Activities through Metabolomics Analysis. Chroma 71, 253–258 (2010). https://doi.org/10.1365/s10337-009-1447-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1447-7

Keywords

Navigation