Skip to main content
Log in

Detection of Agmatine and Octopamine in Rat Brain and Human Plasma by Microchip Electrophoresis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A microchip electrophoresis method with laser induced fluorescence detection was developed for the detection of agmatine (Agm) and octopamine (Oct). The fluorescent derivatization reagent, fluorescein isothiocyanate was used for precolumn derivatization of Agm and Oct. The sodium dodecyl sulfate (SDS) micelles was employed as pseudostationary phase for the separation of Agm and Oct with other endogenous compounds exist in biological samples. Some parameters including buffer concentration, buffer pH, SDS concentration and separation voltage were investigated in detail. Under the optimum conditions, the separation and determination of Agm and Oct was performed within 40 s. The calibration curves were linear for both Agm and Oct over the concentration range of 1.0 × 10−7 to 4.0 × 10−5 M and 1.5 × 10−7 to 4.5 × 10−5 M, respectively. The detection limits of Agm and Oct (S/N = 3) are 5.0 × 10−8 and 8.0 × 10−8 M, respectively. These values make the method very suitable for the determination of Agm and Oct in rat brain tissue and human plasma as demonstrated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patchett ML, Monk CR, Daniel RM, Morgan HW (1988) J Chromatogr 425:269–276

    Article  CAS  Google Scholar 

  2. Kirschbaum J, Rebscher K, Brückner H (2000) J Chromatogr A 881:517–530

    Article  CAS  Google Scholar 

  3. Boulton AA, Juorio AV (1982) Brain trace amines. In: Lajtha A (ed) Handbook of neurochemistry, vol 1: chemical and cellular architecture. Plenum Press, New York, p 189

    Google Scholar 

  4. Wang G, Gorbatyuk OS, Dayanithi G, Ouyang W, Wang J, Milner TA, Regunathan S, Reis DJ (2002) Brain Res 932:25–36

    Article  CAS  Google Scholar 

  5. Veciana-Nogues TM, Hernandez-Jover T, Marine-Font A, VidalCarou MC (1995) J AOAC Int 78:1045–1050

    CAS  Google Scholar 

  6. Reis DJ, Regunathan S (2000) TiPS 21:187–195

    CAS  Google Scholar 

  7. Gilad GM, Salame K, Rabey JM, Gilad VH (1996) Life Sci 58:41–46

    Google Scholar 

  8. Gilad GM, Gilad VH (2000) Neurosci Lett 296:97–100

    Article  CAS  Google Scholar 

  9. Sombati S, Hoyle G (1984) J Neurobiol 15:481–506

    Article  CAS  Google Scholar 

  10. Roeder T (1995) J Pharmacol 114:210–216

    CAS  Google Scholar 

  11. Manghani KK, Lunzer M, Billing BH, Sherlock S (1975) Lancet 306:943–946

    Article  Google Scholar 

  12. Capocaccia L, Cangiano C, Attili AF, Angelico M, Cascino A, Rossi Fanelli F (1977) Clin Chim Acta 75:99–105

    Article  CAS  Google Scholar 

  13. Boulton AA (1980) Can J Neurol Sci 7:261–263

    CAS  Google Scholar 

  14. Kinniburgh DW, Boyd ND (1979) Clin Biochem 12:27–32

    Article  CAS  Google Scholar 

  15. D’Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, Leon A (2003) Neurosci Lett 346:89–92

    Article  Google Scholar 

  16. Feng Y, Halaris AE, Piletz JE (1997) J Chromatogr B 691:277–286

    Article  CAS  Google Scholar 

  17. Zhao S, Feng Y, LeBlanc MH, Piletz JE, Liu YM (2002) Anal Chim Acta 470:155–161

    Article  CAS  Google Scholar 

  18. Ibrahim KE, Couch MW, Williams CM (1984) Anal Chem 56:1695–1699

    Article  CAS  Google Scholar 

  19. Zhao S, Wang B, Yuan H, Xiao D (2006) J Chromatogr A 1123:138–141

    Article  CAS  Google Scholar 

  20. Yu Q, Zhao S, Ye F, Li S (2007) Anal Biochem 369:187–191

    Article  CAS  Google Scholar 

  21. Zhao S, Xie C, Lu X, Liu YM (2006) J Chromatogr B 832:52–57

    Article  CAS  Google Scholar 

  22. Kvasnicka F, Voldrich M (2006) J Chromatogr A 1103:145–149

    Article  CAS  Google Scholar 

  23. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Science 261:895–897

    Article  CAS  Google Scholar 

  24. Reyes DR, Iossifidis D, Manz A (2002) Anal Chem 74:2623–2636

    Article  CAS  Google Scholar 

  25. Rodríguez I, Lee HK, Li S (1999) Eelectrophoresis 20:118–126

    Article  Google Scholar 

  26. Ro KW, Lim K, Kim H, Hahn JH (2002) Eelectrophoresis 23:1129–1137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant No. 20665002), Science Foundation of Ministry of Education, China (No. 206113), and Science Foundation of Guangxi, China (No. 0832004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Huang, Y., Li, X. et al. Detection of Agmatine and Octopamine in Rat Brain and Human Plasma by Microchip Electrophoresis. Chroma 70, 1651–1657 (2009). https://doi.org/10.1365/s10337-009-1387-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1387-2

Keywords

Navigation