Skip to main content
Log in

Analysis of Non-Aromatic Organic Acids in Beer by CE and Direct Detection Mode with Diode Array Detection

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A method for the analysis of the main non-aromatic organic acids in beer using capillary electrophoresis is presented. In this work, malic, citric, succinic, pyruvic, acetic and lactic acids are separated using a sodium hydrogen phosphate background electrolyte with direct detection mode with a diode array detector. The separation exhibits lower sensitivity than equivalent methods with indirect detection mode, however, the risk of co-migration with unknown compounds in beer matrixes is significantly reduced. This is due to (i) a higher efficiency (250,000–400,000 theoretical plates), (ii) a higher selectivity than any equivalent method using an indirect detection mode, and (iii) the possibility to monitor other wavelengths in parallel (260 nm for example) to check for possible co-migration with phenolic or benzoic acids. This was critical when working with beer samples as an unknown compound absorbing at 200 and 260 nm was detected in the neighbourhood of malic, citric and succinic acids. Such co-migration will not have been detected using single wavelength detection below 200 nm or indirect detection mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hardwick WA (1994) The properties of beer. In: Hardwick WA (ed) Handbook of brewing. Marcel Dekker, New York, pp 551–586

    Google Scholar 

  2. Cifuentes A (2006) Electrophoresis 27:283–303. doi:210.1002/elps.200500474

    Article  CAS  Google Scholar 

  3. Klampfl CW (2007) Electrophoresis 28:3362–3378. doi:3310.1002/elps.200700159

    Article  CAS  Google Scholar 

  4. Klampfl CW (1999) J. Agric Food Chem 47:987–990. doi:910.1021/jf9808168

    Article  CAS  Google Scholar 

  5. Cortacero-Ramirez S, de Castro MHB, Segura-Carretero A, Cruces-Blanco C, Fernandez-Gutierrez A (2003) TrAC, Trends Anal Chem 22:440–455. doi:410.1016/s0165-9936(1003)00704-00700

    Article  CAS  Google Scholar 

  6. Cortacero-Ramírez S, Segura-Carretero A, Hernáinz-Bermúdez de Castro M, Fernández-Gutiérrez A (2005) J Chromatogr A 1064:115–119. doi:110.1016/j.chroma.2004.1012.1029

    Article  Google Scholar 

  7. Esteves VI, Lima SSF, Lima DLD, Duarte AC (2004) Anal Chim Acta 513:163–167. doi:110.1016/j.aca.2003.1012.1036

    Article  CAS  Google Scholar 

  8. Gas B, Hruska V, Dittmann M, Bek F, Witt K (2007) J Sep Sci 30:1435–1445. doi:1410.1002/jssc.200600502

    Article  CAS  Google Scholar 

  9. Ramautar R, Somsen GW, de Jong GJ (2007) Anal Bioanal Chem 387:293–301. doi:210.1007/s00216-00006-00911-00216

    Article  CAS  Google Scholar 

  10. Mato I, Huidobro JF, Simal-Lozano J, Sancho MT (2006) J Agric Food Chem 54:1541–1550. doi:1510.1021/jf051757i

    Article  CAS  Google Scholar 

  11. Montanari L, Perretti G, Natella F, Guidi A, Fantozzi P (1999) Food Sci Technol Lebensm Wiss Technol 32:535–539. doi:510.1006/fstl.1999.0593

    Article  CAS  Google Scholar 

  12. Saavedra L, Barbas C (2003) Electrophoresis 24:2235–2243. doi:2210.1002/elps.200305415

    Article  CAS  Google Scholar 

  13. Mato I, Suárez-Luque S, Huidobro JF (2007) Food Chem 102:104–112. doi:110.1016/j.foodchem.2006.1005.1002

    Article  CAS  Google Scholar 

  14. Horvath J, Dolnik V (2001) Electrophoresis 22:644–655. doi:610.1002/1522-2683(200102)200122:200104<200644:AID-ELPS200644>200103.200100.CO;200102-200103

    Article  CAS  Google Scholar 

  15. Erny GL, Bergström ET, Goodall DM (2002) J Chromatogr A 959:229–239. doi:210.1016/S0021-9673(1002)00454-00455

    Article  CAS  Google Scholar 

  16. Kenndler E (1998) Theory of capillary zone electrophoresis. In: Khaledi MG (ed) High-performance capillary electrophoresis: theory, techniques, and applications. Wiley, New York, pp 25–76

    Google Scholar 

  17. Dolan JW (2006) LC GC Europe 19:1–4

    Google Scholar 

  18. Miller JN, Miller JC (2000) Calibration methods in instrumental analysis: regression and correlation. In: Statistics and chemometrics for analytical chemistry. Prentice Hall, Harlow, pp 107–150

  19. Kartsova LA, Bessonova EA (2009) J Anal Chem 64:326–337. doi:310.1134/s1061934809040029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from FCT (Fundação para a Ciência e Tecnologia) with the research project POCTI/CTA/48059/2002. GLE thanks FCT for a postdoctoral grant (FCT SFRH/BPD/30548/2006). JR acknowledges grant funding from FCT (FCT SFRH/BD/31056/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume L. Erny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erny, G.L., Rodrigues, J.E.A., Gil, A.M. et al. Analysis of Non-Aromatic Organic Acids in Beer by CE and Direct Detection Mode with Diode Array Detection. Chroma 70, 1737–1742 (2009). https://doi.org/10.1365/s10337-009-1377-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1377-4

Keywords

Navigation