Skip to main content
Log in

Effect of Thyme (Thymus vulgaris L.) Essential Oil and Its Main Constituents on the Outer Membrane Protein Composition of Erwinia Strains Studied with Microfluid Chip Technology

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Changes in the composition of bacterial outer membrane proteins may result in antibiotic resistance and in altered invasive ability. A rapid method (microfluid chip technology) was used in this study to analyze the outer membrane protein profile changes of Erwinia strains under antibiotic effect and to compare it with the effect of essential oil and its constituents. Streptomycin, gentamicin and thyme essential oil were capable of significantly changing the protein profile. Neither of the main constituents of the essential oil (thymol and carvacrol) can be exclusively responsible for the changes induced. Quantitative changes in the protein profile may contribute to the explanation of antibacterial effect of thyme oil on pathogenic Erwinia. strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McManus PS, Jones AL (1994) Phytopathology 84:627–633

    Article  Google Scholar 

  2. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Annu Rev Phytopathol 40:443–465. doi:10.1146/annurev.phyto.40.120301.093927

    Article  CAS  Google Scholar 

  3. Hevesi M, Hudák I, Dorgai L, Szentkirályi A, Bubán T (2006) Phytopathol Pol 39:79–85

    Article  Google Scholar 

  4. Gonçalves FA, Neto AM, Bezerra JN, Macrae A, Sousa OV, Fonteles-Filho AA, Vieira RH (2008) Rev Inst Med Trop Sao Paulo 50:11–15

    Google Scholar 

  5. Dorman HJD, Deans SG (2000) J Appl Microbiol 88:308–316. doi:10.1046/j.1365-2672.2000.00969.x

    Article  CAS  Google Scholar 

  6. Tabanca N, Demirci B, Baser KH, Aytac Z, Ekici M, Khan SI, Jacob MR, Wedge DE (2006) J Agric Food Chem 54:6593–6597. doi:10.1021/jf0608773

    Article  CAS  Google Scholar 

  7. Lee SB, Cha KH, Kim SN, Altantsetseg S, Shatar S, Sarangerel O, Nho CW (2007) J Microbiol 45:53–57

    CAS  Google Scholar 

  8. Ultee A, Gorris LG, Smid EJ (1998) J Appl Microbiol 85:211–218. doi:10.1046/j.1365-2672.1998.00467.x

    Article  CAS  Google Scholar 

  9. Marino M, Bersani C, Comi G (1999) J Food Prot 62:1017–1023

    CAS  Google Scholar 

  10. Horváth G, Szabó LG, Lemberkovics É, Botz L, Kocsis B (2004) J Planar Chromatogr 17:300–304. doi:10.1556/JPC.17.2004.4.11

    Article  Google Scholar 

  11. Longbottom CJ, Carson CF, Hammer KA, Mee BJ, Riley TV (2004) J Antimicrob Chemother 54:386–392. doi:10.1093/jac/dkh359

    Article  CAS  Google Scholar 

  12. Denyer SP, Maillard JY (2002) J Appl Microbiol Symp Suppl 92:35S–45S. doi:10.1046/j.1365-2672.92.5s1.19.x

    Google Scholar 

  13. Kustos I, Andrásfalvy M, Kustos T, Kocsis B, Kilár F (2005) Electrophoresis 26:3789–3795. doi:10.1002/elps.200500291

    Article  CAS  Google Scholar 

  14. Babujee L, Venkatesh B, Yamazaki A, Tsuyumu S (2007) J Proteome Res 6:62–69. doi:10.1021/pr060423l

    Article  CAS  Google Scholar 

  15. Poole K (2002) J Appl Microbiol Symp Suppl 92:55S–64S. doi:10.1046/j.1365-2672.92.5s1.8.x

    Google Scholar 

  16. Jorgensen JH, Turnidge JD (2003) Susceptibility test methods: dilution and disk diffusion methods. In: Murray PR (ed) Manual of clinical microbiology. ASM Press, Washington, pp 1108–1127

    Google Scholar 

  17. Kustos I, Kocsis B, Kerepesi I, Kilár F (1998) Electrophoresis 19:2324–2330

    Article  CAS  Google Scholar 

  18. Barabote RD, Johnson OL, Zetina E, San Francisco SK, Fralick JA, San Francisco MJ (2003) J Bacteriol 185:5772–5778. doi:10.1128/JB.185.19.5772-5778.2003

    Article  CAS  Google Scholar 

  19. Toth IK, Thorpe CJ, Bentley SD, Mulholland V, Hyman LJ, Perombelon MC, Salmond GP (1999) Mol Plant Microbe Interact 12:499–507. doi:10.1094/MPMI.1999.12.6.499

    Article  CAS  Google Scholar 

  20. Collins AC, Ashenafi M, Saunders AA, Byrnes WM (2007) Cell Mol Biol (Noisy-le-grand) 53:74–79

    CAS  Google Scholar 

  21. Vukovic N, Milosevic T, Sukdolak S, Solujic S (2007) Evid Based Complement Alternat Med 4:17–20. doi:10.1093/ecam/nem108

    Article  Google Scholar 

  22. Firouzi R, Shekarforoush SS, Nazer AH, Borumand Z, Jooyandeh AR (2007) J Food Prot 70:2626–2630

    CAS  Google Scholar 

  23. Cox SD, Markham JL (2007) J Appl Microbiol 103:930–936. doi:10.1111/j.1365-2672.2007.03353.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ferenc Kilár, Head of the Institute of Bioanalysis, University of Pécs, for the technical background.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Györgyi Horváth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horváth, G., Kovács, K., Kocsis, B. et al. Effect of Thyme (Thymus vulgaris L.) Essential Oil and Its Main Constituents on the Outer Membrane Protein Composition of Erwinia Strains Studied with Microfluid Chip Technology. Chroma 70, 1645–1650 (2009). https://doi.org/10.1365/s10337-009-1374-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1374-7

Keywords

Navigation