Skip to main content
Log in

Chemometric Approach for Simultaneous Optimization of Resolution and Analysis Time in CCC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The chemometric approach combining Box–Behnken response surface model and Derringer’s desirability function was applied for simultaneous optimization of resolution and analysis time in countercurrent chromatography (CCC). The mergence of the two parameters was accomplished using the Derringer’s desirability function with subsequent optimization by a Box–Behnken response surface design. The developed model was checked by statistical analysis. By implementing the optimal flow rate, rotation speed and temperature predicted by the validated model, enhanced resolution between two similar analytes (phenol and resorcinol) was achieved in a reasonable time. The analyses and results obtained in this paper will benefit to improve the efficiency of CCC separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ito Y, Bowman RL (1970) Science 167:281–283

    Article  CAS  Google Scholar 

  2. Mandava NB, Ito Y (1988) Countercurrent chromatography: theory and practice. Marcel Dekker, New York

    Google Scholar 

  3. Menet JM, Thiebaut D (1999) Countercurrent chromatography. Marcel Dekker, New York

    Google Scholar 

  4. Ito Y, Conway WD (1996) High speed countercurrent chromatography. Wiley–Interscience, New York

    Google Scholar 

  5. Berthod A, Armstrong DW (1988) J Liq Chromatogr 11:1187–1204

    Article  CAS  Google Scholar 

  6. Oka H, Harada K, Ito Y (1998) J Chromatogr A 812:35–52

    Article  CAS  Google Scholar 

  7. Matsuda K, Matsuda S, Ito Y (1998) J Chromatogr A 808:95–104

    Article  CAS  Google Scholar 

  8. Peng JY, Jiang YY, Fan GR, Chen B, Zhang QY, Chai YF, Wu YT (2006) Sep Purif Technol 52:22–28

    Article  CAS  Google Scholar 

  9. Lee-Ruff E, Kazarians-Moghaddam H, Katz M (1986) Can J Chem 64:1297–1303

    Article  CAS  Google Scholar 

  10. Koeber R, Bayona JM, Niessner R (1999) Environ Sci Technol 33:1552–1558

    Article  CAS  Google Scholar 

  11. Letzel T, Poschl U, Wissiack R, Rosenberg E, Grasserbauer M, Niessner R (2001) Anal Chem 73:1634–1645

    Article  CAS  Google Scholar 

  12. Brereton RD (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, Chichester

    Google Scholar 

  13. Brown SD, Sum ST, Despagne F, Lavine BK (1996) Anal Chem 68:21R–61R

    Article  Google Scholar 

  14. Daszykowski M, Walczak B (2006) Trends Anal Chem 25:1081–1096

    Article  CAS  Google Scholar 

  15. Deming SN, Morgan SL (1993) Experimental design: a chemometric approach. Elsevier, Amsterdam

    Google Scholar 

  16. Kowalski BR (2001) Chemometrics, mathematics and statistics in chemistry. Springer, New York

    Google Scholar 

  17. Stoyanov K, Walmsley AD (2006) Practical guide to chemometrics. CRC-Taylor and Francis, Oxford

    Google Scholar 

  18. Fraga CG (2003) J Chromatogr A 1019:31–42

    Article  CAS  Google Scholar 

  19. Fraga CG, Bruckner CA, Synovec RE (2001) Anal Chem 73:675–683

    Article  CAS  Google Scholar 

  20. Li H, Hou J, Wang K, Zhang F (2006) Talanta 70:336–343

    Article  CAS  Google Scholar 

  21. Derringer G, Suich R (1980) J Qual Technol 12:214–219

    Google Scholar 

  22. Safa F, Hadjmohammadi MR (2005) J Chromatogr A 1078:42–50

    Article  CAS  Google Scholar 

  23. Gonzalez A, Foster KL, Hanrahan G (2007) J Chromatogr A 1167:135–142

    Article  CAS  Google Scholar 

  24. Hanrahan G, Zhu J, Gibani S, Patil DG (2005) Encyclopedia of analytical science. Elsevier, Oxford

    Google Scholar 

  25. Otto M (1999) Chemometrics: statistics and computer applications in analytical chemistry. Wiley-VCH, Chichester

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the Foundation of Key Laboratory of Bioprocess of Beijing (grant No. SYS 100100421), the National Natural Science Foundation of China (grant No. 20576010) and the Program for New Century Excellent Talents (NCET-05-0117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qipeng Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, X., Li, Y. & Yuan, Q. Chemometric Approach for Simultaneous Optimization of Resolution and Analysis Time in CCC. Chroma 70, 1547–1552 (2009). https://doi.org/10.1365/s10337-009-1343-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1343-1

Keywords

Navigation