Skip to main content

Advertisement

Log in

Duplicating the Retention of Cationic Analytes Obtained with Ammonium Formate Mobile Phases when Switching to UV Transparent Mobile Phase Additives in RP-LC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This study explored feasibility of utilizing sodium phosphate and mixtures of sodium phosphate and sodium perchlorate salts in mobile phases as UV transparent alternatives to the ammonium formate salts commonly used in LC–MS mobile phases. Chromatography experiments were run at pH 3.5 in 25% acetonitrile mobile phase, using several model cationic analytes to evaluate cation retention on two different C18 columns as the type or amount of salt was varied. For both columns, phosphate consistently showed less cation retention than formate. In other respects, the two columns showed very different behavior. The study suggests that it is feasible to use UV transparent mobile phase additives to provide comparable cation retention of formate mobile phases, but that the exact composition needed for optimal retention agreement is column dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Biswas KM, Castle BC, Olsen BA, Risley DS, Skibic MJ, Wright PB (2009) J Pharm Biomed Anal 49:692–701. doi:10.1016/j.jpba.2008.12.039

    Article  CAS  Google Scholar 

  2. Rasmussen HT (2001) Handbook of modern pharmaceutical analysis. Vol 3, Ahuja S, Scypinski S (eds) Academic Press, San Diego, pp 351–354

  3. McCalley DV (2005) J Chromatogr A 1075:57–64. doi:10.1016/j.chroma.2005.02.090

    Article  CAS  Google Scholar 

  4. Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development, 2nd edn. Wiley, NY, pp 299–300

    Google Scholar 

  5. Willard HH, Merritt LL, Dean JA, Settle FA (1988) Instrumental methods of analysis, 7th edn. Wadsworth, Belmont, p 185

    Google Scholar 

  6. Lobrutto R, Kazakevich YV (2006) Adv Chromatogr 44:291–315

    CAS  Google Scholar 

  7. Marin A, Barbas C (2004) J Pharm Biomed Anal 35:1035–1045. doi:10.1016/j.jpba.2004.03.011

    Article  CAS  Google Scholar 

  8. Stahl PH, Wermuth CG (2002) Handbook of pharmaceutical salts, properties, selection, and use. VHCA, Zurich, p 329

    Google Scholar 

  9. Makarov A, Lobrutto R, Kazakevich Y (2008) J Liq Chromatogr Relat Technol 31:1533–1567. doi:10.1080/10826070802125918

    Article  CAS  Google Scholar 

  10. Mant CT, Hodges RS (2006) J Chromatogr A 1125:211–219. doi:10.1016/j.chroma.2006.05.063

    Article  CAS  Google Scholar 

  11. McCalley DV (2003) J Chromatogr A 987:17–28. doi:10.1016/S0021-9673(02)01812-5

    Article  CAS  Google Scholar 

  12. Roberts JM, Diaz AR, Fortin DT, Friedle JM, Piper SD (2002) Anal Chem 74:4927–4932. doi:10.1021/ac0256944

    Article  CAS  Google Scholar 

  13. Gritti F, Guiochon G (2004) J Chromatogr A 1041:63–75. doi:10.1016/j.chroma.2004.05.004

    Article  CAS  Google Scholar 

  14. Loeser E (2008) J Chromatogr Sci 46:45–52

    CAS  Google Scholar 

  15. Loeser E, Drumm P (2007) Anal Chem 79:5382–5391. doi:10.1021/ac0704816

    Article  CAS  Google Scholar 

  16. Subirats X, Bosch E, Rosés M (2004) J Chromatogr A 1059:33–42. doi:10.1016/j.chroma.2004.09.085

    Article  CAS  Google Scholar 

  17. Budavari S, O’Neil MJ, Smith A, Heckelman PE (1989) The Merck Index, 11th edn. Merck & Co, Rahway, pp 662–663

    Google Scholar 

  18. Loeser E (2009) Chromatographia 69:807–811. doi:10.1365/s10337-009-1001-7

    Article  CAS  Google Scholar 

  19. Johnsson K, Allemann RK, Widmer H, Benner SA (1993) Nature 365:530–532. doi:10.1038/365530a0

    Article  CAS  Google Scholar 

  20. Everett DH, Hyne JB (1958) J Chem Soc 1636–1642. doi:10.1039/JR9580001636

  21. ACD/pKaDB v. 10.01 Software, Copyright 2006, Advanced Chemistry Development, Toronto, Ontario, Canada

  22. Kazakevich Y, LoBrutto R (2007) HPLC for pharmaceutical scientists. Wiley, Hoboken, p 186

    Book  Google Scholar 

  23. Marchand DH, Williams LA, Dolan JW, Snyder LR (2003) J Chromatogr A 1015:53–64. doi:10.1016/S0021-9673(03)01216-0

    Article  CAS  Google Scholar 

  24. CurveExpert v. 1.37 Software, Copyright c 1995–2001, Daniel Hyams

  25. Dai J, Carr PW (2005) J Chromatogr A 1072:169–184. doi:10.1016/j.chroma.2005.03.005

    Article  CAS  Google Scholar 

  26. Flieger J (2007) J Chromatogr A 1175:207–216. doi:10.1016/j.chroma.2007.10.036

    Article  CAS  Google Scholar 

  27. Knox JH, Kaliszan R, Kennedy GJ (1980) Faraday Symp Chem Soc 15:113–125. doi:10.1039/fs9801500113

    Article  Google Scholar 

  28. van de Merbel NC, Wilkens G, Fowles S, Oosterhuis B, Jonkman JHG (1998) Chromatographia 47:542–546. doi:10.1007/BF02467492

    Article  Google Scholar 

  29. Yang X, Dai J, Carr PW (2003) J Chromatogr A 996:13–31. doi:10.1016/S0021-9673(03)00537-5

    Article  CAS  Google Scholar 

  30. Marchand DH, Snyder LR (2008) J Chromatogr A 1209:104–110. doi:10.1016/j.chroma.2008.08.122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Loeser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeser, E., Babiak, S. Duplicating the Retention of Cationic Analytes Obtained with Ammonium Formate Mobile Phases when Switching to UV Transparent Mobile Phase Additives in RP-LC. Chroma 70, 1311–1319 (2009). https://doi.org/10.1365/s10337-009-1326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1326-2

Keywords

Navigation