Skip to main content
Log in

Enantioselective Analysis of Fluoxetine and Norfluoxetine by LC in Culture Medium for Application in Biotransformation Studies Employing Fungi

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A liquid chromatography method is described for the analysis of fluoxetine and norfluoxetine enantiomers in fungi cultures. The analytes were separated simultaneously by LC employing a serial system. The resolution was performed using a mobile phase of ethanol: 15 mM ammonium acetate buffer solution, pH 5.9: acetonitrile (77.5:17.5:5, v/v/v). UV detection was at 227 nm. Hexane: isoamyl alcohol (98:2, v/v) was used as extractor solvent. The calibration curves were linear over the concentration range of 12.5–3,750 ng mL−1 (r ≥ 0.996). The values for intra- and inter-day precision and accuracy were ≤10% for all analytes. The validated method was used to evaluate fluoxetine biotransformation to its mammalian metabolite, norfluoxetine, by selected endophytic fungi. Although the desired biotransformation was not observed in the conditions used here, the method could be used to evaluate the biotransformation of fluoxetine by other fungi or to be extended to other matrices with adequate procedures for sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aleu J, Collado IG (2001) J Mol Catal B Enzym 13:77–93. doi:10.1016/S1381-1177(00)00232-0

    Article  CAS  Google Scholar 

  2. Azerad R (1999) Adv Biochem Eng Biotechnol 63:169–218. doi:10.1007/3-540-69791-8_8

    CAS  Google Scholar 

  3. Schulz B, Boyle C (2005) Mycol Res 109:661–686. doi:10.1017/S095375620500273X

    Article  Google Scholar 

  4. Agusta A, Maehara S, Ohasshi K, Simanjuntak P, Shibuta H (2005) Chem Pharm Bull 53:1565–1569. doi:10.1248/cpb.53.1565

    Article  CAS  Google Scholar 

  5. Borges KB, Borges WS, Pupo MT, Bonato PS (2007) Appl Biotechnol Microbiol 77:669–674. doi:10.1007/s00253-007-1171-x

    Article  CAS  Google Scholar 

  6. Borges KB, Borges WS, Pupo MT, Bonato PS (2008) J Pharm Biomed Anal 46:945–952. doi:10.1016/j.jpba.2007.05.018

    Article  CAS  Google Scholar 

  7. Momesso LS, Kawano CY, Ribeiro PH, Nomizo A, Goldman GH, Pupo MT (2008) Quím Nova 31:1680–1685. doi:10.1590/S0100-40422008000700015

    Article  CAS  Google Scholar 

  8. Guimarães DO, Borges WS, Kawano CY, Ribeiro PH, Goldman GH, Nomizo A, Thiemann OH, Oliva G, Lopes NP, Pupo MT (2008) FEMS Immunol Med Microbiol 52:134–144. doi:10.1111/j.1574-695X.2007.00354.x

    Google Scholar 

  9. Verza M, Arakawa NS, Lopes NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) J Braz Chem Soc 20:195–200. doi:10.1590/S0103-50532009000100029

    Article  CAS  Google Scholar 

  10. Gram LF (1994) N Engl J Med 331:1354–1361. doi:10.1056/NEJM199411173312008

    Article  CAS  Google Scholar 

  11. Stokes PE, Holtz A (1997) Clin Ther 19:1135–1250. doi:10.1016/S0149-2918(97)80066-5

    Article  CAS  Google Scholar 

  12. Wong DT, Bymaster FP, Reid LR, Threlkeld PG (1985) Drug Dev Res 6:397–403. doi:10.1002/ddr.430060412

    Article  CAS  Google Scholar 

  13. Fuller RW, Snoddy HD, Krushinski JH, Robertson DW (1992) Neuropharmacology 31:997–1000. doi:10.1016/0028-3908(92)90100-4

    Article  CAS  Google Scholar 

  14. Wong DT, Bymaster FP, Reid LR, Mayle DA, Krushinski JH, Robertson DW (1993) Neuropsychopharmacology 8:337–344 PubMed ID: 8512621

    CAS  Google Scholar 

  15. Sun L, Huang H–H, Liu L, Zhong D-F (2004) Appl Environ Microbiol 70:2722–2727. doi:10.1128/AEM.70.5.2722-2727.2004

    Article  CAS  Google Scholar 

  16. Abel AM, Carnell AJ, Davis JA, Paylor M (2003) Enzyme Microb Technol 33:743–748. doi:10.1016/S0141-0229(03)00207-2

    Article  CAS  Google Scholar 

  17. Cha C-J, Doerge DR, Cerniglia CE (2001) Appl Environ Microbiol 67:4358–4360. doi:10.1128/AEM.67.9.4358-4360.2001

    Article  CAS  Google Scholar 

  18. Moody JD, Heinze TM, Hansen EB Jr, Cerniglia CE (2000) Appl Environ Microbiol 53:310–315. doi:10.1128/AEM.66.8.3646-3649.2000

    CAS  Google Scholar 

  19. Zhang D, Evans FE, Freeman JP, Yang Y, Deck J, Cerniglia CE (1996) Chem Biol Interact 102:79–92. doi:10.1016/S0009-2797(96)03736-2

    Article  CAS  Google Scholar 

  20. Yang W, Jiang T, Acosta D, Davis PJ (1993) Xenobiotica 23:973–982. doi:10.3109/00498259309057036

    Article  CAS  Google Scholar 

  21. Potts BD, Parli CJ (1992) J Liq Chromatogr Relat Technol 15:665–681. doi:10.1080/10826079208018825

    Article  CAS  Google Scholar 

  22. Eap CB, Gaillard N, Powell K, Baumann P (1996) J Chromatogr B 682:265–272. doi:10.1016/0378-4347(96)00080-1

    Article  CAS  Google Scholar 

  23. Guo X, Fukushima T, Li F, Imai K (2002) Analyst 127:480–484. doi:10.1039/b111053p

    Article  CAS  Google Scholar 

  24. Olsen BA, Wirth DD, Larew JS (1998) J Pharm Biomed Anal 17:623–630. doi:10.1016/S0731-7085(98)00050-8

    Article  CAS  Google Scholar 

  25. Kaddoumi A, Nakashima MN, Nakashima K (2001) J Chromatogr B 763:79–90. doi:10.1016/S0378-4347(01)00368-1

    Article  CAS  Google Scholar 

  26. Gatti G, Bonomi I, Marchiselli R, Fattore C, Spina E, Scordo G, Pacifici R, Perucca E (2003) J Chromatogr B 784:375–383. doi:10.1016/S1570-0232(02)00820-6

    Article  CAS  Google Scholar 

  27. Bakhtiar R, Tse F (2000) Rapid Commun Mass Spectrom 14:1128–1135. doi:10.1002/1097-0231(20000715)14:13<1128:AID-RCM1>3.0.CO;2-5

    Article  CAS  Google Scholar 

  28. Shen Z, Wang S, Bakhtiar R (2002) Rapid Commun Mass Spectrom 16:332–338. doi:10.1002/rcm.580

    Article  CAS  Google Scholar 

  29. Berthod A, Jin HL, Beesley TE, Duncan JD, Armstrong DW (1990) J Pharm Biomed Anal 8:123–130. doi:10.1016/0731-7085(90)80018-K

    Article  CAS  Google Scholar 

  30. Piperaki S, Poulou MP (1993) Chirality 5:258–266. doi:10.1002/chir.530050414

    Article  CAS  Google Scholar 

  31. Yee L, Wong S, Skrinska V (2000) J Anal Toxicol 24:651–655 PubMed ID: 11043675

    CAS  Google Scholar 

  32. Yu H, Ching CB, Fu P, Ng SC (2002) Sep Sci Technol 37:1401–1415. doi:10.1081/SS-120002618

    Article  CAS  Google Scholar 

  33. Torok-Both GA, Baker GB, Coutts RT, McKenna KF, Aspeslet LJ (1992) J Chromatogr 579:99–106. doi:10.1016/0378-4347(92)80367-Y

    Article  CAS  Google Scholar 

  34. Ulrich S (2003) J Chromatogr B 783:481–490. doi:10.1016/S1570-0232(02)00725-0

    Article  CAS  Google Scholar 

  35. Soini H, Riekkola M, Novotny MV (1992) J Chromatogr A 608:265–274. doi:10.1016/0021-9673(92)87133-S

    Article  CAS  Google Scholar 

  36. Soini H, Stefansson M, Riekkola M, Novotny MV (1994) Anal Chem 66:3477–3484. doi:10.1021/ac00092a028

    Article  CAS  Google Scholar 

  37. Piperaki S, Penn SG, Goodall DM (1995) J Chromatogr A 700:59–67. doi:10.1016/0021-9673(95)00113-2

    Article  CAS  Google Scholar 

  38. Desiderio C, Rudaz S, Raggi MA, Fanali S (1999) Electrophoresis 20:3432–3438. doi:10.1002/(SICI)1522-2683(19991101)20:17<3432:AID-ELPS3432>3.0.CO;2-8

    Article  CAS  Google Scholar 

  39. Allenmark S, Schurig V (1997) J Mater Chem 7:1955–1963. doi:10.1039/a702403g

    Article  CAS  Google Scholar 

  40. Risley DS, Sharp VS, Palmer JR (1996) J Liq Chromatogr Relat Technol 19:449–465. doi:10.1080/10826079708013660

    Article  CAS  Google Scholar 

  41. Pichini S, Pacifici R, Altieri I, Pellegrini M, Zuccaro P (1996) J Liq Chromatogr Relat Technol 19:1927–1935. doi:10.1080/10826079608014016

    Article  CAS  Google Scholar 

  42. Guidance for Industry, Bioanalytical Method Validation (2001) US Department of Health and Human Services Food and Drug Administration. Center for Drug Evaluation and Research (CDER), Rockville, USA

  43. Nichols JH, Charison JR, Lawson GM (1994) Clin Chem 40:1312–1316 PubMed ID: 8013105

    CAS  Google Scholar 

  44. Dixit V, Nguyen H, Dixit VM (1991) J Chromatogr 563:379–384. doi:10.1016/0378-4347(91)80045-E

    Article  CAS  Google Scholar 

  45. Kovacevic I, Pokrajac M, Miljkovic B, Jovanovic D, Prostran M (2006) J Chromatogr B 830:372–376. doi:10.1016/j.jchromb.2005.11.034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support and for granting research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierina Sueli Bonato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, K.B., Okano, L.T., Pupo, M.T. et al. Enantioselective Analysis of Fluoxetine and Norfluoxetine by LC in Culture Medium for Application in Biotransformation Studies Employing Fungi. Chroma 70, 1335–1342 (2009). https://doi.org/10.1365/s10337-009-1321-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1321-7

Keywords

Navigation