Skip to main content
Log in

Lipophilicity of Some Preservatives Estimated by RP-TLC Using Stationary Phases with Different Polarity

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Lipophilcity of some preservatives was determined by reversed phase high performance thin layer chromatography (RP-HPTLC) using methanol–water mixtures in different volume proportions as mobile phase on three stationary phases of different polarity: RP-18F254s, RP-18WF254s and CNF254s plates. The R M values decreased linearly with increasing methanol concentration in the mobile phase in all cases. The regression determination coefficients obtained for all stationary phases were excellent (higher than 0.98 in most cases). The chromatographic behavior of the preservatives on the RP-HPTLC plates used in this study is similar and in a very good agreement with their polarity. Good chromatographic regularities found for retention factors and by applying principal component analysis for all three types of stationary phases indicate that the same lipophilic interactions are dominants in all cases. The relationships between different RP-HPTLC retention parameters (R M0 , b, scores of R F -PC1/R F and scores of R M -PC1/R M ) and various calculated log P values of the same preservatives show highly significant correlations for all types of stationary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Wang R, Fu Y, Lai L (1997) J Chem Inf Comput Sci 37:615–621

    CAS  Google Scholar 

  2. Selassie CD, Garg R, Kapur S, Kurup A, Verma RP, Mekapati SB, Hansch C (2002) Chem Rev 102:2585–2605

    Article  CAS  Google Scholar 

  3. Chuman H, Goto S, Karasawa M, Sasaki M, Nagashima U, Nishimura K, Fujita T (2000) Quant Struct-Act Relat 19:455–466

    Article  CAS  Google Scholar 

  4. Leo AJ (1993) Chem Rev 93:1281–1306

    Article  CAS  Google Scholar 

  5. Sârbu C, Malawska B (2000) J Liq Chromatogr Relat Technol 23:2143–2154

    Article  Google Scholar 

  6. Casoni D, Kot-Wasik A, Namieśnik J, Sârbu C (2009) J Chromatogr A 1216:2456–2465

    Article  CAS  Google Scholar 

  7. Ravetti S, Gualdesi MS, Briñón MC (2008) J Liq Chromatogr Relat Technol 31:1014–1032

    Article  CAS  Google Scholar 

  8. Perišić-Janjić NU, Lučić B, Janjić NJ, Agbaba D (2003) J Planar Chromatogr 16:347–350

    Article  Google Scholar 

  9. Perišić-Janjić NU, Javanović BŽ, Janjić NJ, Rajković OS, Antonević DG (2003) J Planar Chromatogr 16:425–432

    Article  Google Scholar 

  10. Janicka M (2007) J Planar Chromatogr 20:267–274

    Article  CAS  Google Scholar 

  11. Pyka A, Gurak D (2007) J Planar Chromatogr 20:373–380

    Article  CAS  Google Scholar 

  12. Morak-Mładowska B, Pluta K (2008) J Liq Chromatogr Relat Technol 31:611–618

    Article  Google Scholar 

  13. Yamazaki H, Yoneda T, Yamaguchi T (1998) Jpn J Food Chem 5:130–139

    CAS  Google Scholar 

  14. Soni MG, Burdock GA, Taylor SL, Greenberg NA (2001) Food Chem Toxicol 39:513–532

    Article  CAS  Google Scholar 

  15. Soni MG, Taylor SL, Greenberg NA, Burdock GA (2002) Food Chem Toxicol 40:1335–1373

    Article  CAS  Google Scholar 

  16. Ring J, Brockow K, Behrendt H (2001) J Chromatogr B 756:3–10

    Article  CAS  Google Scholar 

  17. Flieger J, Tatarczak M (2006) J Planar Chromatogr 19:386–392

    Article  CAS  Google Scholar 

  18. Gocan S, Cimpan G, Comer J (2005) Lipophilicity measurements by liquid chromatography. In: Grushka E, Grinberg N (eds) Advances in chromatography. Oxford, UK, pp 79–158

    Google Scholar 

  19. Nasal A, Buciński A, Bober L, Kaliszan R (1997) Int J Pharm 159:43–55

    Article  CAS  Google Scholar 

  20. Kaliszan R (2007) Chem Rev 107:3212–3246

    Article  CAS  Google Scholar 

  21. Sârbu C, Casoni D, Dărăbanţu M, Maiereanu C (2004) J Pharm Biomed Anal 35:213–219

    Article  Google Scholar 

  22. Sârbu C, Todor S (1998) J Planar Chromatogr 11:123–126

    Google Scholar 

  23. Sârbu C, Todor S (1998) J Chromatogr A 822:263–269

    Article  Google Scholar 

  24. Kayillo S, Dennis GR, Shalliker RA (2006) J Chromatogr A 1126:283–297

    Article  CAS  Google Scholar 

  25. HyperChem, release 7.5 for Windows, Molecular Modeling System; Hypercube, Inc. and Autodesk, Inc

  26. Chemical Structure Drawing Standard, ChemDraw Ultra 8.0.3 (2003) http://www.cambridgesoft.com

  27. Talete SRL, DRAGON for windows (software for molecular descriptor calculations). Version 5.4-2006. http://www.talete.mi.it

  28. Virtual Computational Chemistry Laboratory. http://www.vcclab.org/lab/alogps/

  29. The Human Metabolome Project. http://www.metabolomics.ca

Download references

Acknowledgement

The financial support of the Ministry of Education and Research of Romania (CNCSIS, IDEI 560/2007) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel Sârbu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casoni, D., Sârbu, C. Lipophilicity of Some Preservatives Estimated by RP-TLC Using Stationary Phases with Different Polarity. Chroma 70, 1277–1282 (2009). https://doi.org/10.1365/s10337-009-1265-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1265-y

Keywords

Navigation