Skip to main content
Log in

Properties of a Non-Aromatic Epoxy Polymer-Based Monolithic Capillary Column for μ-HPLC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

We report the chromatographic properties of a new type of epoxy polymer-based monolithic capillary column, the Tetrad-C column. The column was prepared by a completely new method—reaction of a tetra-functional epoxy monomer, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (trade name Tetrad-C), with a diamine, 4-[(4-aminocyclohexyl)methyl)cyclohexane (BACM). This polymer monolith has no aromatic functional groups reducing chromatographic performance. The columns were carefully observed by scanning electron microscopy and evaluated chromatographically by use of a μ-HPLC system. It was found that morphological control of the epoxy polymer-based monolith was possible simply by changing the polymerization conditions, i.e., the polymerization temperature and/or the relative amounts of porogenic solvent and BACM. Another advantage was that volumetric shrinkage of the tetra-functional epoxy-based monolith during the polymerization reaction was much less than for the tri-functional epoxy-based monolithic (TEPIC) column reported in our previous paper. A Tetrad-C column 200 mm long afforded up to 10,000 plates for alkylbenzenes in reversed-phase-mode. This column can also work in HILIC mode, although the hydrophobicity of the column was greater than that of the TEPIC column. Heat treatment (160 °C for 2 h; to eliminate residual, unreacted, functional groups) had a negligible effect on column performance, indicating the columns were thermally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Olsen BA, Castle BC, Myers DP (2006) Trends Analyt Chem 25:796–805. doi:10.1016/j.trac.2006.06.005

    Article  CAS  Google Scholar 

  2. Sadilek P, Satinsky D, Solich P (2007) Trends Analyt Chem 26:375–384. doi:10.1016/j.trac.2007.02.002

    Article  CAS  Google Scholar 

  3. Hewitt LM, Marvin CH (2005) Mutat Res 589:208–232. doi:10.1016/j.mrrev.2005.02.001

    Article  CAS  Google Scholar 

  4. Claessens HA, Straten MA (2004) J Chromatogr A 1060:23–41. doi:10.1016/j.chroma.2004.08.098

    CAS  Google Scholar 

  5. Unger KK, Jilge G, Kinkel JN, Hearn MTW (1986) J Chromatogr 359:61–72. doi:10.1016/0021-9673(86)80062-0

    Article  CAS  Google Scholar 

  6. Moriyama H, Anegayama M, Komiya K, Kato Y (1995) J Chromatogr A 691:81–89. doi:10.1016/0021-9673(94)00744-T

    Article  CAS  Google Scholar 

  7. Knox JH (1977) J Chromatogr Sci 15:352–364. ISSN 0021-9665

    Google Scholar 

  8. Nakanishi K (1997) J Porous Mater 4:67–112. doi:10.1023/A:1009627216939

    Article  CAS  Google Scholar 

  9. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1997) J Chromatogr A 762:135–146. doi:10.1016/S0021-9673(96)00944-2

    Article  CAS  Google Scholar 

  10. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1998) J Chromatogr A 797:121–131. doi:10.1016/S0021-9673(97)00947-3

    Article  CAS  Google Scholar 

  11. Svec F, Frechet JMJ (1996) Anal Chem 68:315–321. doi:10.1021/ac950726r

    Article  Google Scholar 

  12. Svec F, Frechet JMJ (1996) Science 273:205–211. doi:10.1126/science.273.5272.205

    Article  CAS  Google Scholar 

  13. Svec F, Frechet JMJ (1992) Anal Chem 64:820–822. doi:10.1021/ac00031a022

    Article  CAS  Google Scholar 

  14. Viklund C, Ponten E, Glad B, Irgum K, Horsted P, Svec F (1997) Chem Mater 9:463–471. doi:10.1021/cm9603011

    Article  CAS  Google Scholar 

  15. Yu C, Dacey MH, Svec F, Frechet JMJ (2001) Anal Chem 73:5088–5096. doi:10.1021/ac0106288

    Article  CAS  Google Scholar 

  16. Yu C, Xu MC, Svec F, Frechet JMJ (2002) J Polym Sci Polym Chem 40:755–769. doi:10.1002/pola.10155

    Article  CAS  Google Scholar 

  17. Rohr T, Hilder EF, Donvan JJ, Svec F, Frechet JMJ (2003) Macromolecules 36:1677–1684. doi:10.1021/ma021351w

    Article  CAS  Google Scholar 

  18. Peters EC, Svec F, Frechet JMJ, Viklund C, Irgum K (1999) Macromolecules 32:6377–6379. doi:10.1021/ma990538t

    Article  CAS  Google Scholar 

  19. Tsujioka N, Hira N, Aoki S, Tanaka N, Hosoya K (2005) Macromolecules 38:9901–9903. doi:10.1021/ma051409h

    Article  CAS  Google Scholar 

  20. Hosoya K, Hira N, Yamamoto K, Nishimura M, Tanaka N (2006) Anal Chem 78:5729–5735. doi:10.1021/ac0605391

    Article  CAS  Google Scholar 

  21. Hosoya K, Sakamoto M, Akai K, Mori T, Kubo T, Kaya K, Okada K, Tsujilka N, Tanaka N (2008) Anal Sci 24:149–154. doi:10.2116/analsci.24.149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Hosoya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosoya, K., Mori, T., Sakamoto, M. et al. Properties of a Non-Aromatic Epoxy Polymer-Based Monolithic Capillary Column for μ-HPLC. Chroma 70, 699–704 (2009). https://doi.org/10.1365/s10337-009-1260-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1260-3

Keywords

Navigation