Skip to main content
Log in

Alternative LC–MS–MS Method for Simultaneous Determination of Proguanil, Its Active Metabolite in Human Plasma and Application to a Bioequivalence Study

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

An alternative rapid and sensitive liquid chromatography–tandem mass spectrometry method has been developed and validated for simultaneous analysis of proguanil (PRO) and cycloguanil (CYC) in human plasma. The analytes were extracted from human plasma by solid phase extraction. Riluzole (RIL) was used as an internal standard for proguanil and cycloguanil. A HyPURITY Advance C18 column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatography conditions and mass spectrometric detection in the positive ionization mode using an API-4000 system. The proposed method has been validated with linear range of 1.5–150.0 ng mL−1 for PRO and 0.5–50.0 ng mL−1 for CYC. The inter-run and intra-run precision values are within 2.54, 9.19% for PRO and 1.99, 10.69% for CYC at LOQ levels. The overall recoveries for PRO and CYC were 102.52 and 106.72%, respectively. Total elution time was as low as 2.50 min. This validated method was used successfully for analysis of plasma samples from a bioequivalence study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GlaxoSmithKline-Malarone (atovaquone and proguanil hydrochloride) tablets prescribing information (2007) 1–4

  2. Wangboonskul J, White NJ, Nosten F, ter Kuile F, Moody RR, Taylor RB (1993) Eur J Clin Pharmacol 44:247–251. doi:10.1007/BF00271366

    Article  CAS  Google Scholar 

  3. De Aguiar PF, Heyden YV, Oost YV, Coomber TJ, Massart DL (1997) J Pharm Biomed Anal 15:1781–1787. doi:10.1016/S0731-7085(96)01967-X

    Article  Google Scholar 

  4. Kelly JA, Fletcher KA (1986) J Chromatogr A 381:464–471

    CAS  Google Scholar 

  5. Edstein MD (1986) J Chromatogr A 380:184–189

    CAS  Google Scholar 

  6. Taylor RB, Moody RR, Oobekpe NA (1987) J Chromatogr A 416:394–399. doi:10.1016/0378-4347(87)80526-1

    Article  CAS  Google Scholar 

  7. Bergqvist Y, Funding L, Krysen B, Leek T, Yvell K (1998) Ther Drug Monit 20:325–330. doi:10.1097/00007691-199806000-00014

    Article  CAS  Google Scholar 

  8. Taylor RB, Reid RG, Low AS (2001) J Chromatogr A 916:201–206. doi:10.1016/S0021-9673(00)01035-9

    Article  CAS  Google Scholar 

  9. Taylor RB, Reid RG (1995) J Pharm Biomed Anal 13:21–26. doi:10.1016/0731-7085(94)00127-N

    Article  CAS  Google Scholar 

  10. Bergqvist Y, Funding L, Kaneko A, Krysen B, Leek T (1998) J Chromatogr B Biomed Sci Appl 719:141–149. doi:10.1016/S0378-4347(98)00382-X

    Article  CAS  Google Scholar 

  11. Bergqvist Y, Hopstadius C (2000) J Chromatogr B Analyt Technol Biomed Life Sci 741:189–193. doi:10.1016/S0378-4347(00)00082-7

    Article  CAS  Google Scholar 

  12. Lejeune D, Souletie I, Houze S, Bricon TL, Bras JL, Gourmel B, Houze P (2007) J Pharm Biomed Anal 43:1106–1115. doi:10.1016/j.jpba.2006.09.036

    Article  CAS  Google Scholar 

  13. Ebeshi BU, Obodozie OO, Bolaji OO, Ogunbona FA (2005) Afr J Biotechnol 4:856–861

    CAS  Google Scholar 

  14. Hoskins JM, Shenfield GM, Gross AS (1997) J Chromatogr B Biomed Sci Appl 696:81–87. doi:10.1016/S0378-4347(97)00225-9

    Article  CAS  Google Scholar 

  15. Taylor RB, Alexander C, Nathwani D, Zimbler N (1996) J Liq Chromatogr Relat Technol 19:1317–1328. doi:10.1080/10826079608006320

    Article  CAS  Google Scholar 

  16. Kusaka M, Setiabudy R, Chiba K, Ishizaki T (1996) Am J Trop Med Hyg 54:189–196

    CAS  Google Scholar 

  17. Wanwimolruk S, Pratt EL (1995) J Liq Chromatogr 18:4097–4105. doi:10.1080/10826079508013747

    Article  CAS  Google Scholar 

  18. Kolawole JA, Taylor RB, Moody RR (1995) J Chromatogr B Biomed Appl 674:149–154. doi:10.1016/0378-4347(95)00293-3

    Article  CAS  Google Scholar 

  19. Chaulet FJ, Grelaud G, Patrick MB, Mounier C, Brazier LJ (1994) J Pharm Biomed Anal 12:111–117. doi:10.1016/0731-7085(94)80018-9

    Article  CAS  Google Scholar 

  20. Taylor RB, Behrens R, Moody RR (1990) J Chromatogr A 527:490–497

    CAS  Google Scholar 

  21. Leveque NL, Charman WN, Chiu FCK (2006) J Chromatogr B Analyt Technol Biomed Life Sci 830:314–321. doi:10.1016/j.jchromb.2005.11.004

    Article  CAS  Google Scholar 

  22. Guidance for industry: bioanalytical method validation, U.S. Department of health and human services, food and drug administration centre for drug evaluation and research (CDER), centre for veterinary medicine (CVM) 2001

Download references

Acknowledgments

The authors are indebted to Prof. R. T. Sane, Dr. Vikas Vaidya, Mr. Nelson Varghese and Mr. Sudhir Pawar for their continuous support and for providing the laboratory facilities required for this assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran V. Mangaonkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pingale, S.G., Nerurkar, K.K., Padgaonkar, A.M. et al. Alternative LC–MS–MS Method for Simultaneous Determination of Proguanil, Its Active Metabolite in Human Plasma and Application to a Bioequivalence Study. Chroma 70, 1095–1102 (2009). https://doi.org/10.1365/s10337-009-1259-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1259-9

Keywords

Navigation