Skip to main content

Advertisement

Log in

Use of Self-Training Artificial Neural Networks in a QSRR Study of a Diverse Set of Organic Compounds

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

For a very diverse set of toxicologically compounds, the gas chromatographic Kovats retention indices have been modeled using chemometric methods. First, a genetic algorithm–multiple linear regression (GA–MLR) model has been obtained using molecular descriptors. Then, 15 selected descriptors in the GA–MLR model have been used as input for a self-training artificial neural network (STANN). STANN has been developed as a faster and more accurate non-linear method in our laboratory. After optimization, a 15-9-1 STANN was generated for prediction of retention indices of these organic compounds. The predictive quality of the STANN model was tested for an external prediction set and also five leave-multiple-outs cross-validation sets. Obtained results showed the ability of developed STANN model for predicting retention indices of various compounds. Also, obtained results indicate that in this QSRR study, genetic algorithm is a suitable method for selecting the molecular descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jalali-Heravi M, Garkani-Nejad Z (1993) J Chromatogr 648:389–393. doi:10.1016/0021-9673(93)80421-4

    Article  CAS  Google Scholar 

  2. Olivero J, Kannan K (1999) J Chromatogr A 849:621–627. doi:10.1016/S0021-9673(99)00402-1

    Article  CAS  Google Scholar 

  3. Katritzky AR, Chen K, Maran U, Carlson DA (2000) Anal Chem 72:101–109. doi:10.1021/ac990800w

    Article  CAS  Google Scholar 

  4. K¨ortvelyesi T, G¨orgenyi M, Heberger K (2001) Anal Chim Acta 428:73–82. doi:10.1016/S0003-2670(00)01220-4

    Article  Google Scholar 

  5. Fatemi MH (2002) J Chromatogr A 955:273–280. doi:10.1016/S0021-9673(02)00169-3

    Article  CAS  Google Scholar 

  6. Junkes BS, Amboni RDMC, Yunes RA, Heinzen VEF (2003) Anal Chim Acta 477:29–39

    Article  CAS  Google Scholar 

  7. Luan F, Xue CX, Zhang RS, Zhao CY, Liu MC, Hu ZD, Fan BT (2005) Anal Chim Acta 537:101–110

    Article  CAS  Google Scholar 

  8. Song Y, Zhou J, Zi S, Xie J, Ye Y (2005) Bioorg Med Chem 13:3169–3173

    Article  CAS  Google Scholar 

  9. Carlucci G, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 601:68–76. doi:10.1016/j.aca.2007.08.026

    Article  CAS  Google Scholar 

  10. Heberger K (2007) J Chromatogr A 1158:273–305. doi:10.1016/j.chroma.2007.03.108

    Article  CAS  Google Scholar 

  11. Li J, Sun J, He Z (2007) J Chromatogr A 1140:174–179. doi:10.1016/j.chroma.2006.11.091

    Article  CAS  Google Scholar 

  12. Flieger J, Swieboda R, Tatarczak M (2007) J Chromatogr B 846:334–340. doi:10.1016/j.jchromb.2006.08.028

    Article  CAS  Google Scholar 

  13. Lu C, Guo W, Yin C (2006) Anal Chim Acta 561:96–102. doi:10.1016/j.aca.2005.12.058

    Article  CAS  Google Scholar 

  14. Skrbic B, Onjia A (2006) J Chromatogr A 1108:279–284. doi:10.1016/j.chroma.2006.01.080

    Article  CAS  Google Scholar 

  15. Fragkaki AG, Koupparis MA, Georgakopoulos CG (2004) Anal Chim Acta 512:165–171. doi:10.1016/j.aca.2004.02.019

    Article  CAS  Google Scholar 

  16. Komsta L (2007) Anal Chim Acta 593:224–237

    Article  CAS  Google Scholar 

  17. Liu F, Liang Y, Cao C, Zhou N (2007) Talanta 72:1307–1315. doi:10.1016/j.talanta.2007.01.038

    Article  CAS  Google Scholar 

  18. Liu F, Liang Y, Cao C, Zhou N (2007) Anal Chim Acta 594:279–289. doi:10.1016/j.aca.2007.05.023

    Article  CAS  Google Scholar 

  19. Xia B, Ma W, Zhang X, Fan B (2007) Anal Chim Acta 598:12–18. doi:10.1016/j.aca.2007.07.016

    Article  CAS  Google Scholar 

  20. Put R, Heyden YV (2007) Anal Chim Acta 602:164–172. doi:10.1016/j.aca.2007.09.014

    Article  CAS  Google Scholar 

  21. Vandeginste BGM, Massart DL, Buydens LCM, De Jong S, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics: part B. Elsevier, Amsterdam

    Google Scholar 

  22. Kramer R (1998) Chemometric techniques for quantitative analysis. Marcel Dekker, New York

    Google Scholar 

  23. Wold S, Sj¨ostr¨om M, Eriksson L (1998) The encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  24. Jalali-Heravi M, Kyani A (2004) J Chem Inf Comput Sci 44:1328–1335. doi:10.1021/ci0342270

    CAS  Google Scholar 

  25. Hancock T, Put R, Coomans D, Heyden YV, Everingham Y (2005) Chemom Intell Lab Syst 76:185–196. doi:10.1016/j.chemolab.2004.11.001

    Article  CAS  Google Scholar 

  26. Pfleger K, Maurer HH, Weber A (1992) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites, 2nd edn. VCH, Weinheim

    Google Scholar 

  27. Todeschini R, Consonni V, Mauri A, Pavan M (2003) Software dragon: calculation of molecular descriptors, department of environmental sciences. University of Milano-Bicocca, and Talete, srl, Milan. <http://disat.unimib.it/chm/Dragon.htm>

  28. MATLAB for Windows (2001) The language of technical computing, Ver.7.1.0.450 release 12.1. The Math Works Inc

  29. http://www.imagination-engines.com/stanno.htm

  30. Jalali-Heravi M, Garkani-Nejad Z (2002) J Chromatogr A 945:173–184. doi:10.1016/S0021-9673(01)01513-8

    Article  CAS  Google Scholar 

  31. Jalali-Heravi M, Garkani-Nejad Z (2002) J Chromatogr A 950:183–194. doi:10.1016/S0021-9673(02)00054-7

    Article  CAS  Google Scholar 

  32. Jalali-Heravi M, Garkani-Nejad Z, Kyani A (2008) QSAR Comb Sci 27:137–146. doi:10.1002/qsar.200510205

    Article  CAS  Google Scholar 

  33. Osten DW (1998) J Chemom 2:39–48. doi:10.1002/cem.1180020106

    Article  Google Scholar 

  34. Garkani-Nejad Z, Karlovits M, Demuth W, Stimpfl T, Vycudilik W, Jalali-Heravi M, Varmuza K (2004) J Chromatogr A 1028:287–295. doi:10.1016/j.chroma.2003.12.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Garkani-Nejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garkani-Nejad, Z. Use of Self-Training Artificial Neural Networks in a QSRR Study of a Diverse Set of Organic Compounds. Chroma 70, 869–874 (2009). https://doi.org/10.1365/s10337-009-1241-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1241-6

Keywords

Navigation