Skip to main content
Log in

Enantiomeric Separation of Two Antiparkinsonian Drugs by Electrokinetic Chromatography Using Dextran Sulfate

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Anionic polysaccharide dextran sulfate (DxS) was successfully employed as chiral selector for the enantioseparation of two antiparkinsonian drugs, including rotigotine and trihexyphenidyl (THP), by electrokinetic chromatography (EKC). The enantioseparation was performed under normal and reversed polarity modes and reversed enantiomer migration order was achieved under two modes. The parameters affecting the chiral separation, such as buffer pH, DxS concentration, organic additive, and temperature were investigated and optimized. Reversed polarity mode provided better separation for the two drugs. The optimized conditions for the enantioseparation under reversed polarity mode were 2.0% (w/v) DxS, 10 mM phosphate buffer, pH 2.5 with an applied voltage of −30 kV at 25 °C. Direct UV detection was performed at 200 nm. Under the optimal conditions, rotigotine and THP enantiomers were enantioresolved in 40 min with the resolution of 2.0 and 5.8, respectively. The analytes could be enantioseparated using DxS of molecular mass 1,000,000 or 500,000. It was inferred that the electrostatic, hydrophobic, and steric interactions may be involved in the chiral separation mechanism in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berthod A (2006) Anal Chem 78:2093–2099. doi:10.1021/ac0693823

    Article  Google Scholar 

  2. Marina ML, Ríos A, Valcárcel M (2005) Analysis and detection by capillary electrophoresis. In: Barceló D (ed) Comprehensive analytical chemistry, vol XLV. Elsevier, Amsterdam, pp 617–692

    Google Scholar 

  3. Ward TJ, Baker BA (2008) Anal Chem 80:4363–4372. doi:10.1021/ac800662y

    Article  CAS  Google Scholar 

  4. Ha PTT, Hoogmartens J, Van Schepdael A (2006) J Pharm Biomed Anal 41:1–11. doi:10.1016/j.jpba.2006.01.035

    Article  CAS  Google Scholar 

  5. Blanco M, Valverde I (2003) Trends Anal Chem 22:428–439. doi:10.1016/S0165-9936(03)00705-2

    Article  CAS  Google Scholar 

  6. Gubitz G, Schmid MG (2008) J Chromatogr A 1204:140–156. doi:10.1016/j.chroma.2008.07.071

    Article  Google Scholar 

  7. Wang ZZ, Ouyang J, Baeyens WRG (2008) J Chromatogr B Anal Technol Biomed Life Sci 862:1–14. doi:10.1016/j.jchromb.2007.11.034

    Article  CAS  Google Scholar 

  8. Sutton RMC, Sutton KL, Stalcup AM (1997) Electrophoresis 18:2297–2304. doi:10.1002/elps.1150181220

    Article  CAS  Google Scholar 

  9. Nishi H, Nakamura K, Nakai H, Sato T (1995) Anal Chem 67:2334–2341. doi:10.1021/ac00110a003

    Article  CAS  Google Scholar 

  10. Nishi H (1996) J Chromatogr A 735:345–351. doi:10.1016/0021-9673(95)01328-8

    Article  CAS  Google Scholar 

  11. Nishi H (1997) J Chromatogr A 792:327–347. doi:10.1016/S0021-9673(97)00794-2

    Article  CAS  Google Scholar 

  12. Nishi H, Kuwahara Y (2001) J Biochem Biophys Methods 48:89–102. doi:10.1016/S0165-022X(01)00142-7

    Article  CAS  Google Scholar 

  13. Phinney KW, Jinadu LA, Sander LC (1999) J Chromatogr A 857:285–293. doi:10.1016/S0021-9673(99)00777-3

    Article  CAS  Google Scholar 

  14. Beck GM, Neau SH (1996) Chirality 8:503–510. doi:10.1002/(SICI)1520-636X(1996)8:7<503::AID-CHIR7>3.0.CO;2-B

    Article  CAS  Google Scholar 

  15. Gotti R, Furlanetto S, Andrisano V, Cavrini V, Pinzauti S (2000) J Chromatogr A 875:411–422. doi:10.1016/S0021-9673(99)01303-5

    Article  CAS  Google Scholar 

  16. Chankvetadze B, Saito M, Yashima E, Okamoto Y (1997) J Chromatogr A 773:331–338. doi:10.1016/S0021-9673(99)01303-5,10.1016/S0021-9673(97)00263-X

    Article  CAS  Google Scholar 

  17. Wang XD, Lee JT, Armstrong DW (1999) Electrophoresis 20:162–170. doi:10.1002/(SICI)1522-2683(19990101)20:1<162:AID-ELPS162>3.0.CO;2-6

    Article  CAS  Google Scholar 

  18. Park H, Lee S, Kang S, Jung Y, Jung S (2004) Electrophoresis 25:2671–2674. doi:10.1002/elps.200405971

    Article  CAS  Google Scholar 

  19. Kwon C, Park H, Jung S (2007) Carbohydr Res 342:762–766. doi:10.1016/j.carres.2006.12.018

    Article  CAS  Google Scholar 

  20. Stalcup AM, Gahm KH (1996) Anal Chem 68:1360–1368. doi:10.1021/ac950764a

    Article  CAS  Google Scholar 

  21. Zakaria P, Macka M, Haddad PR (2004) Electrophoresis 25:270–276. doi:10.1002/elps.200305743

    Article  CAS  Google Scholar 

  22. Suzuki Y, Arakawa H, Maeda M (2004) Biomed Chromatogr 18:150–154. doi:10.1002/bmc.301

    Article  CAS  Google Scholar 

  23. Kelly T, Doble P, Dawson M (2003) Electrophoresis 24:2106–2110. doi:10.1002/elps.200305418

    Article  CAS  Google Scholar 

  24. Katayama H, Ishihama Y, Asakawa N (1998) Anal Chem 70:2254–2260. doi:10.1021/ac9708755

    Article  CAS  Google Scholar 

  25. Nishi H, Nakamura K, Nakai H, Sato T, Terabe S (1994) Electrophoresis 15:1335–1340. doi:10.1002/elps.11501501204

    Article  CAS  Google Scholar 

  26. Agyei NM, Gahm KH, Stalcup AM (1995) Anal Chim Acta 307:185–191. doi:10.1016/0003-2670(95)00080-J

    Article  CAS  Google Scholar 

  27. Chen Y, Lu XN, Han ZQ, Qi L, Wang MX, Yu X, Yang GL, Mao LQ, Ma HM (2005) Electrophoresis 26:833–840. doi:10.1002/elps.200410317

    Article  CAS  Google Scholar 

  28. Chu BL, Guo BY, Zuo HJ, Wang ZH, Lin JM (2008) J Pharm Biomed Anal 46:854–859. doi:10.1016/j.jpba.2007.02.010

    Article  CAS  Google Scholar 

  29. Talati R, White CM, Coleman CI (2007) Formulary 42:633–634

    CAS  Google Scholar 

  30. Manimaran T, Impastato FJ (1990) US Patent 4968837

  31. Chu B-L, Lin J-M, Wang Z, Guo B (2008) Electrophoresis (accepted)

  32. Lambrecht G, Feifel R, Moser U, Aasen AJ, Waelbroeck M, Christophe J, Mutschler E (1988) Eur J Pharmacol 155:167–170. doi:10.1016/0014-2999(88)90417-7

    Article  CAS  Google Scholar 

  33. Capka V, Xu Y, Chen YH (1999) J Pharm Biomed Anal 21:507–517. doi:10.1016/S0731-7085(99)00116-8

    Article  CAS  Google Scholar 

  34. Capka V, Xu Y (2001) J Chromatogr B Anal Technol Biomed Life Sci 762:181–192. doi:10.1016/S0378-4347(01)00364-4

    Article  CAS  Google Scholar 

  35. Li H, Wang PH, Li C, Wang H, Zhang HS (2008) Microchem J 89:34–41. doi:10.1016/j.microc.2007.11.002

    Article  CAS  Google Scholar 

  36. Gahm K-H, Stalcup AM (1995) Anal Chem 67:19–25. doi:10.1021/ac00097a005

    Article  CAS  Google Scholar 

  37. Chankvetadze B (1997) Capillary electrophoresis in chiral analysis. Wiley, New York

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 90813015, 20575008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, BL., Feng, Q., Wang, Z. et al. Enantiomeric Separation of Two Antiparkinsonian Drugs by Electrokinetic Chromatography Using Dextran Sulfate. Chroma 70, 817–824 (2009). https://doi.org/10.1365/s10337-009-1232-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1232-7

Keywords

Navigation