Skip to main content
Log in

Establishment of a Fingerprint of Raspberries by LC

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

To monitor the quality of raspberries, a simple, practicable, and feasible method, high-performance liquid chromatography coupled with photodiode-array detection, has been developed both for fingerprinting analysis and for quantitative analysis of hyperoside and tiliroside. Compounds were separated on a 4.6 mm × 250 mm, 5-μm particle, C18 column with a mobile phase gradient prepared from acetonitrile and 0.5% (v/v) aqueous glacial acetic acid. The mobile phase flow rate was 1.0 mL min−1, the temperature 30 °C, the injection volume 10 μL, and the detection wavelength 340 nm. Under the optimum conditions the two compounds could be well separated with good linear relationships between response and amount in the range 0.024–2.380 μg for hyperoside and 0.026–2.570 μg for tiliroside. Recovery of hyperoside and tiliroside was 99.3 and 106.0%, respectively. The standardized chromatographic fingerprint and the similarity of samples were calculated by use of software. Principal-components analysis was used to differentiate and classify 14 samples on the basis of the area of seven common peaks. Combination of chemical fingerprinting and the quantitative method with principal-component analysis may provide a firm basis for further research on quality control of raspberries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. The Pharmacopoeial Commission of the PRC (2005) Pharmacopoeia of the People’s Republic of China Version 2005. Chemical Industry Press, Beijing

    Google Scholar 

  2. Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G (2007) Food Chem 102:777–783. doi:10.1016/j.foodchem.2006.06.021

    Article  CAS  Google Scholar 

  3. Hattori M, Kuo KP, Shu YZ, Tezuka Y, Kikuchi T, Namba T (1988) Phytochemistry 27:3975–3976. doi:10.1016/0031-9422(88)83061-9

    Article  CAS  Google Scholar 

  4. Chou WH, Oinaka T, Kanamaru F (1987) Chem Pharm Bull 35:3021–3029

    CAS  Google Scholar 

  5. Skupien K, Osmianski J, Kostrzewa-Nowak D, Tarasiuk J (2006) Cancer Lett 236:282–291. doi:10.1016/j.canlet.2005.05.018

    Article  CAS  Google Scholar 

  6. Juranic Z, Zizak Z, Tasic S, Petrovic S, Nidzovic S, Leposavic A, Stanojkovic T (2005) Food Chem 93:39–45. doi:10.1016/j.foodchem.2004.08.041

    Article  CAS  Google Scholar 

  7. Jin XF, Lu YH, Wei DZ, Wang ZT (2008) J Pharm Biomed Anal 48:100–104. doi:10.1016/j.jpba.2008.05.027

    Article  CAS  Google Scholar 

  8. Liang YZ, Xie PS, Chan K (2004) J Chromatogr B 812:53–70

    CAS  Google Scholar 

  9. World Health Organization (1991) Guidelines for the Assessment of Herbal Medicines. WHO, Geneva

    Google Scholar 

  10. Committee of the National Pharmacopoeia (2000) Pharmacopoeia of PR China. Chemical Industry Press, Beijing

    Google Scholar 

  11. Ming G, Fan OY, Zhi S (2004) J Chromatogr A 1022:139–144. doi:10.1016/j.chroma.2003.09.038

    Article  Google Scholar 

  12. Wang LC, Cao YH, Xing XP, Ye JN (2005) Chromatographia 62:283–288. doi:10.1365/s10337-005-0624-6

    Article  CAS  Google Scholar 

  13. Yang DF, Liang ZS, Duan QM, Zhang YJ (2007) Chromatographia 66:509–514. doi:10.1365/s10337-007-0359-7

    Article  CAS  Google Scholar 

  14. Chen Y, Yan Y, Xie MY, Nie SP, Liu W, Gong XF, Wang Y (2008) J Pharm Biomed Anal 47:469–477. doi:10.1016/j.jpba.2008.01.039

    Article  CAS  Google Scholar 

  15. Yang LW, Wu DH, Tang X (2005) J Chromatogr A 1070:35–42. doi:10.1016/j.chroma.2005.02.081

    Article  CAS  Google Scholar 

  16. Xie PS (2005) Chromatography fingerprint of traditional chinese medicine. People’s Medical Publishing House, Beijing

    Google Scholar 

  17. Budzianowski J, Skrzypczak L (1995) Phytochemistry 38:997–1001. doi:10.1016/0031-9422(94)00727-B

    Article  CAS  Google Scholar 

  18. Liu Y, Wang C, Zhang Z, Han Q, Ding G (2002) Chin Trad Herb Drugs 33:289–291

    CAS  Google Scholar 

  19. Wang LX, Xiao HB, Liang XM, Bi KS (2002) Acta Pharmacol Sin 37:713–717. doi:10.1021/jf8029397

    Google Scholar 

  20. Chou GX, Xu SJ, Liu D, Koh GY, Zhang J, Liu ZJ (2009) J Agric Food Chem 57:1076–1083. doi:10.1021/jf8029397

    Article  CAS  Google Scholar 

  21. Xie PS, Chen SB, Yi-zeng Liang YZ, Wang XH, Tian RT, Upton R (2006) J Chromatogr A 1112:171–180. doi:10.1016/j.chroma.2005.12.091

    Article  CAS  Google Scholar 

  22. Gan F, Ye RY (2006) J Chromatogr A 1104:100–105. doi:10.1016/j.chroma.2005.11.099

    Article  CAS  Google Scholar 

  23. Ni YN, Peng YY, Serge K (2008) Chromatographia 67:211–217

    Article  CAS  Google Scholar 

  24. Zhao Y, Li ZW, Zhou X, Cai ZW, Gong XJ, Zhou CY (2008) J Pharm Biomed Anal 48:230–1236

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Shanghai Leading Academic Discipline Project (B505) and by the National Special Fund for State Key Laboratory of Bioreactor Engineering, grant no. 2060204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hua Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Lu, YH., Wei, DZ. et al. Establishment of a Fingerprint of Raspberries by LC. Chroma 70, 981–985 (2009). https://doi.org/10.1365/s10337-009-1217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1217-6

Keywords

Navigation