Skip to main content

LC Determination of Lidocaine and Prilocaine Containing Potential Risky Impurities and Application to Pharmaceuticals

An Erratum to this article was published on 07 August 2009


A liquid chromatographic method for the determination of lidocaine (LID), prilocaine (PRL) and their impurities 2,6-dimethylaniline (DMA) and o-toluidine (TOL) has been developed. The analysis was performed on a reversed phase C18 Hypersil BDS column at ambient temperature. A mobile phase consisting of Briton-Robinson buffer, pH 7—methanol—acetonitrile (40: 45: 15 v/v/v) was used at a flow rate of 1.2 mL min−1. Detection was achieved at 225 nm using benzophenone as internal standard over the concentration range 1.25–80 μg mL−1 for all analytes. The relative standard deviations RSD (n = 7) for the assay were less than 0.95%. Limit of detection values were found to be 0.346, 0.423, 0.112 and 0.241 μg mL−1 for LID, PRL, DMA and TOL, respectively. The intraday and the inter-days RSD % indicated the precision of the procedure. The method proved to be suitable for the quality control of LID and PRL in pharmaceuticals.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Yanagidate F, Strichartz GR (2007) Local Anesthetics. Handb Exp Pharmacol 177:95–127. doi:10.1007/978-3-540-33823-9_4

    Article  CAS  Google Scholar 

  2. Catterall W, Mackie K (1996) In: Hardman J, Limbird L, Molinoff P, Ruddon R, Gilman A (eds) The pharmacological basis of therapeutics. McGraw-Hill, New York, pp 331–347

  3. British Pharmacopoeia (2007) Her Majesty’s Stationary Office. London, UK, pp 1243–1244, 1724–1725

  4. The United States Pharmacopoeia (USP 30), National Formulary (NF 25) (2007) The United States Pharmacopoeial Convention, Rockville, MD, pp 251–253, 2471, 3013–3014

  5. Jonsson A, Mattsson U, Tarnow P, Nellgard P, Cassuto J (1968) Burns 24:313–318. doi:10.1016/S0305-4179(98)00011-4

    Article  Google Scholar 

  6. Fijalek Z, Baczynski E, Piwonska A, Warowna-Grzeskiewiez M (2005) J Pharm Biomed Anal 37:913–918. doi:10.1016/j.jpba.2004.09.025

    Article  CAS  Google Scholar 

  7. Baczynski E, Pinwonska A, Fijalek Z (2002) Pol Pham 59:333–339

    CAS  Google Scholar 

  8. Waraszkiewicz SM, Milano EA, DiRubio R (1981) J Pharm Sci 70:1215–1218. doi:10.1002/jps.2600701109

    Article  CAS  Google Scholar 

  9. Smith DJ (1981) J Chromatogr Sci 19:253–258

    CAS  Google Scholar 

  10. Puente NW, Josephy PD (2001) J Anal Toxicol 25:711–715

    CAS  Google Scholar 

  11. Koujitani T, Yasuhara K, Kobayashi H, Shimada A, Onodera H, Takagi H, Hirose M, Mitsumori K (1999) Cancer Lett 142:161–171. doi:10.1016/S0304-3835(99)00153-6

    Article  CAS  Google Scholar 

  12. Skipper PL, Trudel LJ, Kensler TW, Groopman JD, Egner PA, Liberman RG, Wogan GN, Tannenbaum SR (2006) Chem Res Toxicol 19:1086–1090. doi:10.1021/tx060082q

    Article  CAS  Google Scholar 

  13. Gaber K, Harreus UA, Matthias C, Kleinsasser NH, Richter E (2007) Toxicology 229:157–164. doi:10.1016/j.tox.2006.10.012

    Article  CAS  Google Scholar 

  14. Klimundova J, Satinsky D, Sklenarova H, Solich P (2006) Talanta 69:730–735. doi:10.1016/j.talanta.2005.11.011

    Article  CAS  Google Scholar 

  15. Wiberg K, Andersson M, Hagman A, Jacobsson SP (2004) J Chromatogr A 1029:13–20. doi:10.1016/j.chroma.2003.12.052

    Article  CAS  Google Scholar 

  16. Wiberg K, Jacobsson SP (2004) Anal Chem Acta 514:203–209. doi:10.1016/j.aca.2004.03.062

    Article  CAS  Google Scholar 

  17. Adams HA, Biscoping J, Ludolf K, Borgmann A, Bachmann MB, Hempelmann G (1989) Reg Anaesth 12:53–57

    CAS  Google Scholar 

  18. Arinobu T, Hattori H, Ishii A, Kumazawa T, Lee XP, Suzuki O, Seno H (2003) Chromatographia 57:301–307. doi:10.1007/BF02492400

    Article  CAS  Google Scholar 

  19. Klein J, Fernandes D, Gazarian M, Kent G, Koren G (1994) J Chromatogr B 655:83–88. doi:10.1016/0378-4347(94)00062-X

    Article  CAS  Google Scholar 

  20. Smith FM, Nuessle NO (1981) Am J Hosp Pharm 38:1745–1747

    CAS  Google Scholar 

  21. Abdel-Rehim M, Bielenstein M, Askemark Y, Tyrefors N, Arvidsson T (2000) J Chromatogr B 741:175–188. doi:10.1016/S0378-4347(00)00054-2

    Article  CAS  Google Scholar 

  22. Beckett AH, Stenlake JB (1983) In: Practical pharmaceutical chemistry, part II, 3rd edn. Athlone Press, London, p 743

  23. Galichet LY (ed) (2004) In: Clark’s isolation and identification of drugs, 3rd edn. The Pharmaceutical Press, London, pp 797, 1156

  24. ICH “Validation of Analytical Procedure: Text and Methodology Q2 (R1)” In: Proceedings of the international conference on harmonization of technical requirements for the registration of pharmaceuticals for human use.

  25. Miller JN (1991) Analyst (Lond) 116:3–14. doi:10.1039/an9911600003

    Article  CAS  Google Scholar 

  26. Tarko T (2006) Acta Sci Pol Technol Aliment 5:37–45

    Google Scholar 

  27. Silvander M, Hellstrom A, Warnheim T, Claesson P (2003) Int J Pharm 18:123–132. doi:10.1016/S0378-5173(02)00626-9

    Article  Google Scholar 

  28. Schott H, Royce AE (1984) J Pharm Sci 73:793–799. doi:10.1002/jps.2600730622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohammad Abdul-Azim Mohammad.

Additional information

An erratum to this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohammad, M.AA. LC Determination of Lidocaine and Prilocaine Containing Potential Risky Impurities and Application to Pharmaceuticals. Chroma 70, 563–568 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Column liquid chromatography
  • Pharmaceutical study
  • Lidocaine
  • Prilocaine and impurities