Skip to main content
Log in

A Comparison of Chromatographic Methods for the Determination of Deoxynivalenol in Wheat

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Liquid chromatography coupled with tandem mass spectrometric detection has gained more importance for mycotoxin determination in recent years. In addition to instrumental improvements, the development of LC-MS-MS has also been a consequence of the availability of stable isotope internal standards, e.g., 13C-labelled mycotoxins. Thus, the LC-ESI-MS-MS method using a 13C15-deoxynivalenol internal standard as a state-of-the-art technique was selected as a reference procedure for an in-house method comparison study of the determination of deoxynivalenol (DON) in wheat materials. Alternative methods include LC-diode array detection, which is a frequently used routine procedure for DON-analysis, and gas chromatography after trimethylsilylation. For GC application, an electron capture detector and a negative chemical ionisation mass spectrometry detector were used, which have both been well described in the literature. The method comparison was conducted using t test statistics. Additionally, this study also calculates important method performance characteristics, including accuracy, linearity, limit of detection, limit of quantification, recovery, and variation coefficient. Furthermore, this is the first report of a GC-MS method for the determination of DON using a fully carbon-labelled 13C15-DON as an IS. The GC-MS using 13C15-DON as an IS has produced comparable results to the 13C-IS-LC-MS-MS reference method with a similar sensitivity. ECD detection was slightly less sensitive, but is also suited for DON analysis in wheat. Due to the high LOQ, the LC-DAD method seems highly applicable to the measurement of highly contaminated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Communication regulation 2005/856/CE amending regulation 466/2001/CE as regards fusarium toxins. Off J Eur Commun 2005; L 143/3

  2. Langseth W, Runderberg T (1998) J Chromatogr A 815:103–121. doi:10.1016/S0021-9673(98)00388-4

    Article  CAS  Google Scholar 

  3. Klötzel M, Schmidt S, Lauber U, Thielert G, Humpf HU (2005) Chromatographia 62:41–48. doi:10.1365/s10337-005-0576-x

    Article  Google Scholar 

  4. Jiménez M, Mateo JJ, Mateo R (2000) J Chromatogr A 870:473–481. doi:10.1016/S0021-9673(99)00890-0

    Article  Google Scholar 

  5. Sano A, Matsutani S, Suzuki M, Takitani S (1987) J Chromatogr A 410:427–436. doi:10.1016/S0021-9673(00)90072-4

    Article  CAS  Google Scholar 

  6. Krska R, Baumgartner S, Josephs R (2001) Fresenius J Anal Chem 371:285–299. doi:10.1007/s002160100992

    Article  CAS  Google Scholar 

  7. Razzazi-Fazeli E, Böhm J, Luf W (1999) J Chromatogr A 854:45–55. doi:10.1016/S0021-9673(99)00616-0

    Article  CAS  Google Scholar 

  8. Royer D, Humpf HU, Guy A (2004) Food Addit Contam 21:678–692. doi:10.1080/02652030410001711304

    Article  CAS  Google Scholar 

  9. Berthiller F, Schuhmacher R, Buttinger G, Krska R (2005) J Chromatogr A 1062:209–216. doi:10.1016/j.chroma.2004.11.011

    Article  CAS  Google Scholar 

  10. Gentili A, Caretti F, D’Ascenzo G, Rocca LM, Marchese S, Materazzi S, Perret D (2007) Chromatographia 66:669–676. doi:10.1365/s10337-007-0411-7

    Article  CAS  Google Scholar 

  11. Biselli S, Hummert C (2005) Food Addit Contam 22:752–760. doi:10.1080/02652030500158617

    Article  CAS  Google Scholar 

  12. Razzazi-Fazeli E, Böhm J, Jarukamjorn K, Zentek J (2003) J Chromatogr B Anal Technol Biomed Life Sci 796:21–33. doi:10.1016/S1570-0232(03)00604-4

    Article  CAS  Google Scholar 

  13. Häubl G, Berthiller F, Rechthaler J, Jaunecker G, Binder EM, Krska R, Schuhmacher R (2006) Food Addit Contam 23:1187–1193. doi:10.1080/02652030600654390

    Article  Google Scholar 

  14. Gilbert J (2000) Nat Toxins 7:347–352. doi:10.1002/1522-7189(199911/12)7:6<347::AID-NT78>3.0.CO;2-P

    Article  Google Scholar 

  15. Krska R, Molinelli A (2007) Anal Bioanal Chem 387:145–148. doi:10.1007/s00216-006-0797-3

    Article  CAS  Google Scholar 

  16. Schwadorf K (2006) http://www.lachemie.uni-hohenheim.de/fumi/schwador/publi-b.html. Accessed May 2008

  17. Langseth W, Bernhoft A, Runderberg T, Kosiak B, Gareis M (1999) Mycopathologia 144:103–113. doi:10.1023/A:1007016820879

    Article  CAS  Google Scholar 

  18. Blaas W, Kellert M, Steinmeyer S, Tiebach R, Weber R (1984) Z Lebensm Unters Forsch 179:104–108. doi:10.1007/BF01043259

    Article  CAS  Google Scholar 

  19. Häubl G, Berthiller F, Krska R, Schuhmacher R (2006) Anal Bioanal Chem 384:692–696. doi:10.1007/s00216-005-0218-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhof, T., Ganzauer, N., Koch, M. et al. A Comparison of Chromatographic Methods for the Determination of Deoxynivalenol in Wheat. Chroma 69, 1457–1462 (2009). https://doi.org/10.1365/s10337-009-1084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1084-1

Keywords

Navigation