Skip to main content
Log in

Separation of Clinical Grade 188Re from 188W Using Polymer Embedded Nanocrystalline Titania

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Currently, 188Re is obtained from 188W/188Re chromatographic generator containing alumina which has a limited capacity (~80 mg Wg−1) for 188W. This results in high bolus volumes of 188Re, which often needs to be concentrated before radiolabeling. We have demonstrated the feasibility of using polymer embedded nano crystalline titania (TiP), a novel high capacity sorbent material (~300 mg Wg−1), for developing a 188W/188Re chromatographic generator. A TiP based chromatographic 188W/188Re generator was developed in which 188Re could be eluted with 0.9% saline solution. About 90% of the 188Re could be recovered in the first 4–5 mL of total activity with more than 80% yield. The purity of 188Re is adequate for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Knapp FF Jr (1998) Cancer Biother Radiopharm 13:337–349

    Article  CAS  Google Scholar 

  2. Savio E, Gaudiano J, Robles A, Martinez G, Leon A, Veredra S, Muniz J, Hermid C, Knapp FF Jr (2001) BMC Nucl Med 1(23):1471–1485

    Google Scholar 

  3. Blower PJ, Kettle AG, O’Doherty MJ, Coakley AJ, Knapp FF Jr (2000) Eur J Nucl Med 27(9):1405–1409. doi:10.1007/s002590000307

    Article  CAS  Google Scholar 

  4. Liepe K, Hliscs R, Kropp J, Gruning T, Runge R, Koch R, Knapp FF Jr, Franke WG (2000) Cancer Biother Radiopharm 15(3):261–265. doi:10.1089/108497800414356

    Article  CAS  Google Scholar 

  5. Palmedo H, Guhlke S, Bender H, Sartor J, Schoeneich G, Risse J, Grunwald F, Knapp FF Jr, Biersack HJ (2000) Eur J Nucl Med 27(2):123–130. doi:10.1007/s002590050017

    Article  CAS  Google Scholar 

  6. Knapp FF Jr, Spencer R, Kropp J (2001) J Nucl Med 42(9):1384–1387

    CAS  Google Scholar 

  7. Weinberger J, Giedd KN, Simon AD, Marboe C, Knapp FF Jr, Trichter F, Amols H (1999) Cardiovasc Radiat Med 1:252–256. doi:10.1016/S1522-1865(99)00024-4

    Article  CAS  Google Scholar 

  8. Jeong JM, Knapp FF Jr (2008) Semin Nucl Med 38(2):S19–S29. doi:10.1053/j.semnuclmed.2007.10.003

    Article  Google Scholar 

  9. Nalan S, Cetin O, Sait S, Teyfik G, Murat G, Serrvet O (2007) J Nucl Med 48(Supp 2):54

    Google Scholar 

  10. Amalia Peix A, Alonso O, Chae IH, Chung JK, Gutierrez C, Kropp J, Onsel C, Silvasi I, Llerena L, Padhy AK (2005) J Nucl Cardiol 12(2-1):S20

    Google Scholar 

  11. Ponsard B, Hiltunen J, Penttilla P, Vera Ruiz H, Beets AL, Mirzadeh S, Knapp FF Jr (2003) J Radioanal Nucl Chem 257(1):169–174. doi:10.1023/A:1024730301381

    Article  CAS  Google Scholar 

  12. Kamioki H, Mirzadeh S, Lambrecht RM, Knapp FF Jr, Dadachova E (1994) Radiochim Acta 65:39–46

    CAS  Google Scholar 

  13. Knapp FF Jr, Mirzadeh S, Beets AL (1998) Appl Radiat Isot 49:309–315. doi:10.1016/S0969-8043(97)00043-2

    Article  CAS  Google Scholar 

  14. Knapp FF Jr, Callahan AP, Beets AL (1994) Appl Radiat Isot 45:1123–1128. doi:10.1016/0969-8043(94)90026-4

    Article  CAS  Google Scholar 

  15. Knapp FF Jr, Lisic EC, Mirzadeh S (1994) US patent 5(275):802

    Google Scholar 

  16. Botros N, El-Garhy M, Abdulla S, Ally HF (1986) Isotopenpraxis 22:368–371

    CAS  Google Scholar 

  17. Callahan AP, Rice DE, Knapp FF Jr (1989) Nucl Compact 20:3–6

    CAS  Google Scholar 

  18. Coursey BM, Calhoun JM, Cessna JT, Hoppes DD, Schima FJ, Unterweger MP, Golas DB, Callahan AP, Mirzadeh S, Knapp FF Jr (1990) Radioact Radiochem 4(3):38–49

    Google Scholar 

  19. Kamioki H, Mirzadeh S, Knapp FF Jr, Lambrecht RM, Dadachova E (1994) Radiochim Acta 65:39–46

    CAS  Google Scholar 

  20. Knapp FF Jr, Mirzadeh S (1994) Eur J Nucl Med 21(10):1151–1165. doi:10.1007/BF00181073

    Article  Google Scholar 

  21. Perego R, Wierczinsk B, Zhernosekov K, Henkelmann R, Türler A, Nikula T, Buck O (2007) Eur J Nucl Med Mol Imaging 34(2):S210

    Google Scholar 

  22. Dadachova MS, Dadachov R, Lambrecht M (1995) J Radioanal Nucl Chem Lett 200(3):211–221

    Article  Google Scholar 

  23. Dadachov MS, So LV, Lambrecht RM, Dadachova E (2002) Appl Radiat Isot 57(5):641–646. doi:10.1016/S0969-8043(02)00178-1

    Article  CAS  Google Scholar 

  24. Iller E, Polkowska-Motrenko H, Wawszczak D, Konior M, Milczarek J (2007) Annual report. Radioisotope cent POLATOM, vol 4, p 102

  25. Iller E, Deptula A, Brykala M, Sypula M, Konior M (2007) Eur J Nucl Med 34(2):S210

    Google Scholar 

  26. Matsuoka H, Hasimoto K, Hishinuma Y, Ishikawa K, Terunuma H, Tatenuma K (2005) J Nucl Radiochemical Sci 6(3):189–191

    CAS  Google Scholar 

  27. Monroy-Guzman F, Badillo Almaraz, Rivero Gutierrez T, Cohen LG, CosgroveVE, Knapp FF, Rojas Nava P Jr, Rosales CJ (2009) In: Therapeutic Radionuclide Generators: 90Sr/90Y and 188W/188Re Generators, IAEA-TRS-471 (in press)

  28. Edelstein AS, Cammarata RC (1996) In: Nanomaterials: Synthesis, Properties and Applications, Ch. 2. Institute of Physics Publishing, Bristol, U.K

    Book  Google Scholar 

  29. Deliyanni EA, Peleka EN, Matis KA (2007) J Hazard Mater 141:176–184. doi:10.1016/j.jhazmat.2006.06.105

    Article  CAS  Google Scholar 

  30. Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Desalination 232(1-3):145–156. doi:10.1016/j.desal.2007.08.023

    Article  CAS  Google Scholar 

  31. Zhang L, Wang Y, Guo X, Yuan Z, Zhao Z (2009) Hydrometallurgy 95(1–2):92–95. doi:10.1016/j.hydromet.2008.05.001

    Article  CAS  Google Scholar 

  32. Chakravarty R, Shukla R, Ram R, Gandhi S, Dash A, Venkatesh M, Tyagi AK (2008) J Nanosci Nanotechnol 8:4447–4452. doi:10.1166/jnn.2008.280

    Article  CAS  Google Scholar 

  33. Kothari K, Pillai MRA, Unni PR, Shimpi HH, Noronha OPD, Samuel AM (1999) Appl Radiat Isot 51(1):43–49. doi:10.1016/S0969-8043(98)00194-8

    Article  CAS  Google Scholar 

  34. Blower PJ, Lam A, Knapp FF Jr, O’Doherty MJ, Coakley AJ (1996) Nucl Med Commun 17:258–263. doi:10.1097/00006231-199604000-00010

    Article  Google Scholar 

  35. Kothari K, Pillai MRA, Unni PR, Shimpi HH, Noronha OPD, Samuel AM (1999) Appl Radiat Isot 51(1):51–58. doi:10.1016/S0969-8043(98)00195-X

    Article  CAS  Google Scholar 

  36. Lin WY, Hsieh JF, Lin CP, Hsieh BT, Ting G, Wang SJ, Knapp FF Jr (1999) Nucl Med Biol 26(4):455–459. doi:10.1016/S0969-8051(99)00007-4

    Article  CAS  Google Scholar 

  37. Mushtaq A (1996) Appl Radiat Isot 47(8):727–729. doi:10.1016/0969-8043(96)00032-2

    Article  CAS  Google Scholar 

  38. British Pharmacopoeia Commission British Pharmacopoeia (2008) The Stationery Office, Norwich, UK. http://www.pharmacopoeia.org.uk)

  39. Khalid M, Mushtaq A, Iqbal MZ (2001) Sep Sci Technol 36(2):283–294. doi:10.1081/SS-100001079

    Article  CAS  Google Scholar 

  40. Steigman J (1982) Int J Appl Radiat Isot 33:829–834. doi:10.1016/0020-708X(82)90124-7

    Article  CAS  Google Scholar 

  41. Brenner IB, Erlich S (1984) Appl Spectrosc 38(6):887–890. doi:10.1366/0003702844554594

    Article  CAS  Google Scholar 

  42. Vucina JL, Lukic D, Stoiljkovic M (2004) J Serb Chem Soc 69(8-9):683–688. doi:10.2298/JSC0409683V

    Article  CAS  Google Scholar 

  43. Cardenas J, Mortenson EL (1974) Anal Biochem 60(2):372–381. doi:10.1016/0003-2697(74)90244-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. V. Venugopal, Director, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre for his support to this program. The authors wish to acknowledge Dr. V.K. Manchanda, Head, Radiochemistry Division and Dr. S. Ray, Head, Uranium Extraction Division of this centre for providing their facilities for the determination of zeta potential and ICP analyses respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Dash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarty, R., Dash, A. & Venkatesh, M. Separation of Clinical Grade 188Re from 188W Using Polymer Embedded Nanocrystalline Titania. Chroma 69, 1363–1372 (2009). https://doi.org/10.1365/s10337-009-1070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1070-7

Keywords

Navigation