Skip to main content
Log in

Glycoform Heterogeneity of Human Serum α1-Acid Glycoprotein Determined by CZE in Malignant Diseases

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel capillary zone electrophoresis method was developed to investigate the glycoform heterogeneity of human serum α1-acid glycoprotein (AGP). The simultaneous application of a dimethyl polysiloxane coated capillary and oligoamine additives, particularly spermidine resulted in a more detailed separation of AGP glycoforms than reported previously. The relative distribution of AGP glycoforms in CZE was determined by baseline integration of peak areas and verified by peak-fitting analysis. Providing high purity of AGP samples suitable for CZE a schedule of isolation and purification steps including sample preparation and an improved technique of ion exchange chromatography was applied. Based on data obtained by CZE and on the serum AGP levels measured the serum concentrations of AGP glycoforms were calculated in cancer patients with Hodgkin and non-Hodgkin lymphoma, ovary carcinoma and melanoma compared to healthy donors. Results presented here demonstrated a significant increase in the serum concentration of the more acidic AGP fractions also indicating the overproduction of these glycoforms in cancer. In conclusion, our observations may raise the clinical diagnostic relevance of changes in the molecular heterogeneity of AGP detected by CZE in the various forms of malignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brooks SA, Dwek MV, Schumacher U (2002) Functional and molecular glycobiology. BIOS Scientific Publishers Ltd, Oxford

  2. Gabius HJ, Siebert HC, André S, Jiménez-Barbero J, Rüdiger H (2004) ChemBioChem 5:740–764. doi:10.1002/cbic.200300753

    Article  CAS  Google Scholar 

  3. Wu JT, Nakamura RM (1997) Human circulating tumor markers. Current concepts and clinical application. American Society of Clinical Pathologists, Chicago

  4. Wuhrer M (2007) Expert Rev Proteomics 4:135–136. doi:10.1586/14789450.4.2.135

    Article  CAS  Google Scholar 

  5. Schultz BL, Laroy W, Callewaret N (2007) Curr Mol Med 7:397–416. doi:10.2174/156652407780831629

    Article  Google Scholar 

  6. Kim YJ, Varki A (1997) Glycoconj J 14:569–576. doi:10.1023/A:1018580324971

    Article  CAS  Google Scholar 

  7. Dall’Olio F (1996) J Clin Pathol, Mol Pathol 49:M126–M135. doi:10.1136/mp.49.3.M126

  8. Orntoft TF, Vestergaard EM (1999) Electrophoresis 2:362–371. doi:10.1002/(SICI)1522-2683(19990201)20:2<362::AID-ELPS362>3.0.CO;2-V

    Article  Google Scholar 

  9. Hounsell EF, Young M, Davies MJ (1997) Clin Sci (Lond) 93:287–293

    CAS  Google Scholar 

  10. Ceciliani F, Pocacqua V (2007) Curr Protein Pept Sci 8:91–108. doi:10.2174/138920307779941497

    Article  CAS  Google Scholar 

  11. Hochepied T, Berge FG, Baumann H, Libert C (2003) Cytokine Growth Factor Rev 14:25–34. doi:10.1016/S1359-6101(02)00054-0

    Article  CAS  Google Scholar 

  12. Van Dijk W, Havenaar EC, Brinkman-van der Linden ECM (1995) Glycoconj J 12:227–233. doi:10.1007/BF00731324

    Article  Google Scholar 

  13. Fournier T, Medjoubi-N N, Porquet D (2000) Biochim Biophys Acta 1482:157–171

    CAS  Google Scholar 

  14. Elliott MA, Elliott HG, Gallagher K, McGuire J, Field M, Smith KD (1997) J Chromatogr B, Analyt Technol Biomed Life Sci 688:229–237. doi:10.1016/S0378-4347(96)00309-X

    Article  CAS  Google Scholar 

  15. Durand G, Seta N (2000) Clin Chem 46:795–805

    CAS  Google Scholar 

  16. Mackiewicz A, Mackiewicz K (1995) Glycoconj J 12:241–247. doi:10.1007/BF00731326

    Article  CAS  Google Scholar 

  17. Higai K, Aoki Y, Azuma Y, Matsumoto K (2005) Biochim Biophys Acta 1725:128–135

    CAS  Google Scholar 

  18. Hashimoto S, Asao T, Takahashi J, Yagihashi Y, Nishimura T, Saniabadi AR, Poland DCW, van Dijk W, Kuwano H, Kochibe N, Yazawa S (2004) Cancer 10:2825–2836. doi:10.1002/cncr.20713

    Article  Google Scholar 

  19. Kremmer T, Szöllősi É, Boldizsár M, Vincze B, Ludányi K, Imre T, Schlosser G, Vékey K (2004) Biomed Chromatogr 18:323–329. doi:10.1002/bmc.324

    Article  CAS  Google Scholar 

  20. Van Dijk W, Brinkmam-Van der Linden ECM, Havenaar EC (1998) Trends Glycosci Glycotechnol 10:235–245

    Google Scholar 

  21. Mechref Y, Novotny MV (2002) Chem Rev 102:321–369. doi:10.1021/cr0103017

    Article  CAS  Google Scholar 

  22. Geyer H, Geyer R (2006) Biochim Biophys Acta 1764:1853–1869

    CAS  Google Scholar 

  23. Pritchett T, Robey FA (1996) Capillary electrophoresis of proteins. In: Landers JP (ed) Handbook of capillary electrophoresis, vol 2nd. CRC Press, New York, pp 259–295

    Google Scholar 

  24. Kaheki K, Honda S (1996) J Chromatogr A 720:377–393. doi:10.1016/0021-9673(95)00264-2

    Article  Google Scholar 

  25. Lacunza I, Kremmer T, Díez-Masa JC, Sanz J, de Frutos M (2007) Electrophoresis 23:4447–4451. doi:10.1002/elps.200600700

    Article  Google Scholar 

  26. Kilàr F, Hjertén S (1989) J Chromatogr A 480:351–357. doi:10.1016/S0021-9673(01)84304-1

    Article  Google Scholar 

  27. Balauger E, Neusüss C (2006) Anal Chem 78:5384–5393. doi:10.1021/ac060376g

    Article  Google Scholar 

  28. Bonfichi R (1996) J Chromatogr A 741:139–145. doi:10.1016/0021-9673(96)00210-5

    Article  CAS  Google Scholar 

  29. Kinoshita M, Murakami E, Oda Y, Funakubo T, Kawakami D, Kakehi K, Kawasaki N, Morimoto K, Hayakawa T (2000) J Chromatogr A 866:261–271. doi:10.1016/S0021-9673(99)01080-8

    Article  CAS  Google Scholar 

  30. Pacáková V, Hubená S, Tichá M, Madera M, Stulik K (2001) Electrophoresis 22:459–463. doi:10.1002/1522-2683(200102)22:3<459::AID-ELPS459>3.0.CO;2-P

    Article  Google Scholar 

  31. Lacunza I, Sanz J, Diez-Masa JC, de Frutos M (2006) Electrophoresis 27:4205–4214. doi:10.1002/elps.200600304

    Article  CAS  Google Scholar 

  32. Corradini D (1997) Bioforum Int 2:110–113

    Google Scholar 

  33. Legaz ME, Pedrosa MM (1996) J Chromatogr A 719:159–170. doi:10.1016/0021-9673(95)00337-1

    Article  CAS  Google Scholar 

  34. Saldova R, Royle L, Radcliffe CM (2007) Glycobiology 17:1344–1356. doi:10.1093/glycob/cwm100

    Article  CAS  Google Scholar 

  35. Bierhuizen MFA, De Wit M, Govers CARL, Ferwerda W, Koeleman C, Pos O, Van Dijk W (1988) Eur J Biochem 175:387–394. doi:10.1111/j.1432-1033.1988.tb14208.x

    Article  CAS  Google Scholar 

  36. Moule SK, Peak M, Thomson S, Turner GA (1987) Clin Chim Acta 166:177–185. doi:10.1016/0009-8981(87)90420-7

    Article  CAS  Google Scholar 

  37. Kotsovasilis K, Vamvakopoulos NC, Stathopoulos G, Kiburi J (1990) Clin Chem Enzymol Comm 3:33–39

    Google Scholar 

  38. Matharoo-Ball B, Ratcliff L, Lancashire L, Ugurel S, Miles AK, Weston DJ, Rees R, Schadendorf D, Ball G, Creaser CS (2007) Proteomics Clin Appl 1:605–620

    Article  CAS  Google Scholar 

  39. Imre T, Kremmer T, Héberger K, Molnár-Szöllősi E, Ludányi K, Pócsfalvi G, Malorni A, Drahos L, Vékey K (2008) J Proteomics 71:186–197. doi:10.1016/j.jprot.2008.04.005

    Article  CAS  Google Scholar 

  40. Kremmer T, Boldizsár M, Kovács J, Paulik E, Bencsik K, Szajáni B (1995) J Liq Chromatogr 18:1207–1218. doi:10.1080/10826079508009285

    Article  CAS  Google Scholar 

  41. Szöllősi É, Kremmer T, Ludányi K, Imre T, Schlosser G, Boldizsár M, Vincze B, Vékey K (2004) Chromatographia 60:S 213–S 219

    Google Scholar 

  42. Emmer A, Jarmeus A (2008) Chromatographia 67:151–155. doi:10.1365/s10337-007-0446-9

    Article  Google Scholar 

  43. Snedecor GW, Cochran WG (1989) In: Statistical methods, eighth edn. Iowa State University Press, Ames, Iowa

  44. Rhigetti PG, Gelfi C, Verzola B, Castelletti L (2001) Electrophoresis 22:603–611. doi:10.1002/1522-2683(200102)22:4<603::AID-ELPS603>3.0.CO;2-N

    Article  Google Scholar 

  45. Yuasa I, Weidinger S, Umetsu K, Suenaga K, Ishimoto G, Eap BC, Duche J-C, Baumann P (1993) Vox Sang 64:47–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the technical assistance of Zsuzsa Ary and Rita Vukovics (Biochemical Department of the National Institute of Oncology). This work was supported by the grants of OTKA TO49721 and NKFP 1/A/005/04 (Medichem2 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kremmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Németh, K., Kremmer, T., Kocsis, L. et al. Glycoform Heterogeneity of Human Serum α1-Acid Glycoprotein Determined by CZE in Malignant Diseases. Chroma 69, 1307–1313 (2009). https://doi.org/10.1365/s10337-009-1046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1046-7

Keywords

Navigation